Volatile Organic Compound Emissions from Indoor Fragrance Diffusers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling in a Control Chamber and in the Field
2.2. Preparation of Needle Trap Samplers for Extracting VOCs
2.3. Chemicals, Materials, and Analysis of VOCs
3. Result
3.1. Identifying VOCs Emitted from the Liquid in Fragrance Bottles in a Chamber
3.2. Characteristics of Emitted VOCs in Fragrances in Bathrooms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Alam, J.; Sonnette, A.; Delhomme, O.; Alleman, L.Y.; Coddeville, P.; Millet, M. Pesticides in the Indoor Environment of Residential Houses: A Case Study in Strasbourg, France. Int. J. Environ. Res. Public Health 2022, 19, 14049. [Google Scholar] [CrossRef]
- Steinemann, A. The fragranced products phenomenon: Air quality and health, science and policy. Air Qual. Atmos. Health 2021, 14, 235–243. [Google Scholar] [CrossRef]
- Mečiarová, L.; Vilčeková, S.; Burdová, E.K.; Kiselák, J. Factors effecting the total volatile organic compound (TVOC) concentrations in Slovak households. Int. J. Environ. Res. Public Health 2017, 14, 1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balducci, C.; Cerasa, M.; Avino, P.; Ceci, P.; Bacaloni, A.; Garofalo, M. Analytical determination of allergenic fragrances in indoor air. Separations 2022, 9, 99. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S.; Godwin, C. VOCs in industrial, urban and suburban neighborhoods-Part 2: Factors affecting indoor and outdoor concentrations. Atmos. Environ. 2008, 42, 2101–2116. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor exposure to selected air pollutants in the home environment: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef]
- Wolff, P. Improving indoor air quality in health care settings by controlling synthetic fragrance: What you as a nurse can do. Md. Nurse 2006, 61, 7–9. [Google Scholar]
- Wolff, P.; Nielsen, G.D. Effects by inhalation of abundant fragrances in indoor air—An overview. Environ. Int. 2017, 101, 96–107. [Google Scholar] [CrossRef]
- Carslaw, N.; Shaw, D. Modification cleaning product formulations could improve indoor air quality. Indoor Air 2022, 32, e13021. [Google Scholar] [CrossRef]
- Singer, B.C.; Destaillats, H.; Hodgson, A.T.; Nazaroff, W.W. Cleaning products and air fresheners: Emissions and resulting concentrations of glycol ethers and terpenoids. Indoor Air 2006, 16, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Schwartz-Narbonne, H.; Tandoc, M.; Heffernan, E.M.; Mack, M.L.; Siegel, J.A. The impact of emissions from an essential oil diffuser on cognitive performance. Indoor Air 2022, 32, e12919. [Google Scholar] [CrossRef]
- Wolff, P. Fragrances/odours in indoor air and health effects? Occup. Environ. Med. 2018, 75, A198. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.-H.; Lai, C.-H. Sampling gaseous compounds from essential oils evaporation by solid phase microextraction devices. Atmos. Environ. 2014, 99, 124–129. [Google Scholar] [CrossRef]
- Cheng, W.-H.; Tsai, D.-Y.; Lu, J.-Y.; Lee, J.-W. Extracting emissions from air fresheners using solid phase microextraction devices. Aerosol Air Qual. Res. 2016, 16, 2362–2367. [Google Scholar] [CrossRef] [Green Version]
- Angulo-Milhem, S.; Verriele, M.; Nicolas, M.; Thevenet, F. Indoor use of essential oils: Emission rates, exposure time and impact on air quality. Atmos. Environ. 2021, 244, 117863. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Y.; Zhang, H.; Song, W.; Wu, Z.; Wang, X. Design and characterization of a semi-open dynamic chamber for measuring biogenic volatile organic compound (BVOC) emissions from plants. Atmos. Meas. Tech. 2022, 15, 79–93. [Google Scholar] [CrossRef]
- Silva, G.V.; Martins, A.O.; Martins, S.D.S. Indoor air quality: Assessment of dangerous substances in incense products. Int. J. Environ. Res. Public Health 2021, 18, 8086. [Google Scholar] [CrossRef] [PubMed]
- SolidWorks Company. SOLIDWORKS Simulation Premium, Dassault Systemes; SolidWorks Company: Waltham, MA, USA, 2022. [Google Scholar]
- Huang, P.J.; Cheng, W.H.; Chang, C.Y. Sulfonation of divinylbenzene adsorbents packed in a micro sampler to extract airborne organic compounds. Aerosol Air Qual. Res. 2021, 21, 210157. [Google Scholar] [CrossRef]
- Lord, H.; Zhan, W.; Pawliszyn, J. Fundamentals and applications of needle trap devices. Anal. Chim. Acta 2010, 677, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.H.; Chen, N.Y. Abnormal respiratory symptoms of workers and extracting organic vapors using micro samplers in a golf ball manufacturing factory. Aerosol Air Qual. Res. 2022, 22, 220087. [Google Scholar] [CrossRef]
- Itoh, T.; Masuda, Y.; Matsubara, I.; Arai, J.; Shin, W. Examination of VOC Concentration of aroma essential oils and their major VOCs diffused in room air. Int. J. Environ. Res. Public Health 2022, 19, 2904. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, N.; Kolev, S.D.; Steinemann, A. Volatile chemical emissions from essential oils. Air Qual. Atmos. Health 2018, 11, 949–954. [Google Scholar] [CrossRef]
- Division of Toxicology and Environmental Medicine ToxFAQs: Propylene Glycol; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 1997. Available online: https://www.atsdr.cdc.gov/toxfaqs/tfacts189.pdf (accessed on 8 June 2023).
- Cheng, W.H.; Chang, C.Y.; Chen, Y.Y.; Su, H.W. Chemical composition of aerosols of an electronic cigarette. Aerosol Air Qual. Res. 2021, 21, 200672. [Google Scholar] [CrossRef]
- PubChem: Ethylbenzaldehyde. National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/118623 (accessed on 18 June 2022).
- Liddament, M.W. A Review of ventilation and the quality of ventilation air. Indoor Air 2000, 10, 193–199. [Google Scholar] [CrossRef]
- Suryawanshi, S.; Chauhan, A.S.; Verma, R.; Gupta, T. Identification and quantification of indoor air pollutant sources within a residential academic campus. Sci. Total Environ. 2016, 569–570, 46–52. [Google Scholar] [CrossRef]
- Domínguez-Amarillo, S.; Fernández-Agüera, J.; Cesteros-García, S.; González-Lezcano, R.A. Bad air can also kill: Residential indoor air quality and pollutant exposure risk during the COVID-19 crisis. Int. J. Environ. Res. Public Health 2020, 17, 7183. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wallace, L.A. Residential cooking and use of kitchen ventilation: The impact on exposure. J. Air Waste Manag. Assoc. 2021, 71, 830–843. [Google Scholar] [CrossRef]
- Huang, K.; Wang, R.; Feng, G.; Wang, J.; Yu, M.; He, N. Ventilation status of the residential kitchens in severe cold region and improvement based on simulation: A case of Shenyang, China. J. Air Waste Manag. Assoc. 2022, 72, 935–950. [Google Scholar] [CrossRef]
- Li, H.; Bi, C.; Li, X.; Xu, Y. A needle trap device method for sampling and analysis of semi-volatile organic compounds in air. Chemosphere 2020, 250, 126284. [Google Scholar] [CrossRef]
VOCs | Adsorption Mass (μg) by Different Diffusers * | |||
---|---|---|---|---|
Polyester | Bamboo | |||
60 min | 120 min | 60 min | 120 min | |
Ethanol | 35.0 ± 1.1 | 71.1 ± 1.8 | 51.0 ± 3.5 | 99.8 ± 6.0 |
Propylene glycol | 250.2 ± 5.8 | 523.3 ± 6.9 | 426.2 ± 3.9 | 869.0 ± 4.8 |
3-Ethylbenzaldehyde | 74.4 ± 2.1 | 150.2 ± 1.8 | 112.5 ± 2.4 | 220.1 ± 8.4 |
VOCs | Concentrations of VOCs (ppb) 1 | |
---|---|---|
Bathroom A | Bathroom B | |
Ethanol | 40.5 ± 7.5 | 19.2 ± 2.8 |
Propylene glycol | 527.9 ± 81.9 | 273.4 ± 40.4 |
3-Ethylbenzaldehyde | 12.4 ± 0.6 | 3.8 ± 0.6 |
Toluene 2 | 101.72 | 29.62 |
Air change rate (1/h) | 2.7 | 7.7 |
Calculation specification | Indoor space volume = 1.2 m × 1.6 m × 2.2 m = 4.2 m3 Air flowrate through the window = 11.34 m3/h Air exchange rate of bathroom A = (11.34 m3/h)/(4.2 m3) ≈ 2.7/h | Indoor space volume = 1.25 m × 1.55 m × 2.25 m = 4.4 m3 Air flowrate through the window = 33.77 m3/h Air exchange rate of bathroom B = (33.77 m3/h)/(4.4 m3) ≈ 7.7/h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.-H.; Chen, Y.-C.; Shih, S.-Y. Volatile Organic Compound Emissions from Indoor Fragrance Diffusers. Atmosphere 2023, 14, 1012. https://doi.org/10.3390/atmos14061012
Cheng W-H, Chen Y-C, Shih S-Y. Volatile Organic Compound Emissions from Indoor Fragrance Diffusers. Atmosphere. 2023; 14(6):1012. https://doi.org/10.3390/atmos14061012
Chicago/Turabian StyleCheng, Wen-Hsi, Yi-Chian Chen, and Song-You Shih. 2023. "Volatile Organic Compound Emissions from Indoor Fragrance Diffusers" Atmosphere 14, no. 6: 1012. https://doi.org/10.3390/atmos14061012
APA StyleCheng, W. -H., Chen, Y. -C., & Shih, S. -Y. (2023). Volatile Organic Compound Emissions from Indoor Fragrance Diffusers. Atmosphere, 14(6), 1012. https://doi.org/10.3390/atmos14061012