Air Pollutants and Their Impact on Chronic Diseases—A Retrospective Study in Bucharest, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Objectives
- To compare the values of local pollution levels with limits recommended by the EU and WHO;
- To analyze the correlation between air pollution and the condition of disease in patients with chronic respiratory, cardiovascular, cerebrovascular, or metabolic pathology in the same region.
2.2. Research Setting
2.3. Data Sources
2.3.1. Air Quality Data
2.3.2. Hospitalization Data
- Diagnostic code (according to the International Classification of Diseases, Tenth Revision, ICD-10) at hospital admission: respiratory (COPD, asthma, lung cancer), cardiovascular, cerebrovascular (stroke), or diabetes;
- Age of 20 years old or above;
- Residence in the study’s setting.
2.4. Statistical Analysis
- Stage 1: In order to ensure the accuracy of the analysis, it was necessary to identify the sensors in Bucharest that recorded the daily level of PM concentrations in suspension. Only the sensors that had more than 1000 records for the analyzed period (20 August 2018–1 June 2022) were selected.
- Stage 2: Identification of the number of days with exceedances above the daily limit value.
- Stage 3: Identification of the seasonal characteristics of PM10 and PM2.5 concentrations for an accurate characterization of the pollution level during the analyzed period.
- Stage 4: Identification of the effects of pollution on human health using correlation analysis.
- Stage 5: Application of regression models based on the results obtained in Stage 4.
- Stage 6: Analysis of the future evolution of the effects of pollution on hospitalizations in patients with respiratory, cardiovascular, and cerebrovascular diseases by outlining scenarios determined based on the results obtained in Stage 5.
- () represent the numerical values of the variables cause and effect registered at the level of the statistical unit ;
- and represent the parameters of regression equation: —intercept, the point of intersection of the line of regression with the Oy axis; —the slope of the regression right or the regression coefficient. This shows with how many units of measure change Y if X increases with a unit of measurement;
- —residual component (error term) for the statistical unit .
- The theoretical, deterministic component (), that is, the part of the real value that can be determined on the basis of the model for a certain value :
- The random (residual) component, also called the random error, (), representing that part of the real value of that cannot be quantified.
- —the estimator of the parameter of the statistical population;
- —the estimator of the parameter of the statistical population;
- —the residual value for the unit in the sample ().
3. Results
3.1. Objective 1: To Compare the Values of Local Pollution Levels with Limits Recommended by EU and WHO
3.1.1. PM10 Concentration by Referring to the Recommendations of EU Directive 2008/50/EC; Law 104/2011
- Daily limit value (DLV) = 50 μg/m3, which must not be exceeded more than 35 times/year [43];
- Annual limit value (ALV) = 40 μg/m3 [43].
3.1.2. Evaluation of PM10 Concentrations by Referring to the WHO Global Air Quality Guidelines (AQGs)
3.1.3. Local Pollution Characteristics according to WHO-AQG’s Guidelines
- For PM10: DLV = 45 μg/m3; ALV = 15 μg/m3;
- For PM2.5: DLV = 15 μg/m3, which must not be exceeded more than 3–4 times/year; ALV = 5 μg/m3.
3.2. Objective 2: To Analyze the Correlation between Air Pollution and Condition of Disease in Patients with Chronic Respiratory, Cardiovascular, Cerebrovascular, or Metabolic Pathology in the Same Region
3.2.1. Analysis of the Relationship between Hospital Admissions for Respiratory Diseases and Concentration Levels of PM2.5 and PM10
3.2.2. Analysis of the Relationship between Hospital Admissions for Cardiovascular Diseases and Concentration Levels of PM2.5 and PM10
3.2.3. Correlations between PM Concentrations and Hospital Admissions for Stroke and Diabetes
3.2.4. Regression-Model-Based Scenarios for the Evolution of Hospitalization Rates
- Optimistic/pessimistic scenarios using DAV;
- Optimistic/pessimistic scenarios using MAV.
4. Discussion
4.1. General Data on Pollutants
4.2. Data on the Differences in Reference Values and the Annual Variability
4.3. Correlation of Pollution with Hospital Admissions
4.4. Respiratory Diseases—Correlations
4.5. Cardiovascular Diseases—Correlations
4.6. Cerebrovascular Diseases (Stroke)—Correlations
4.7. Metabolic Diseases (Diabetes)—Correlations
4.8. Lung Cancer—Correlations
4.9. Data Concerning Scenarios for the Evolution of Hospitalization Rates
4.10. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zero Pollution Action Plan. Available online: https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en (accessed on 17 December 2022).
- Air Pollutants|Air|CDC. Available online: https://www.cdc.gov/air/pollutants.htm (accessed on 18 October 2022).
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K. Seasonal Variations of Fine Particulate Matter and Mortality Rate in Seoul, Korea with a Focus on the Short-Term Impact of Meteorological Extremes on Human Health. Atmosphere 2021, 12, 151. [Google Scholar] [CrossRef]
- Manea, D.I.; Titan, E.; Mihai, M.; Apostu, S.A.; Vasile, V. Good Practices on Air Quality, Pollution and Health Impact at EU Level. Amfiteatru Econ. 2020, 22, 256–274. [Google Scholar] [CrossRef]
- Doiron, D.; de Hoogh, K.; Probst-Hensch, N.; Fortier, I.; Cai, Y.; De Matteis, S.; Hansell, A.L. Air Pollution, Lung Function and COPD: Results from the Population-Based UK Biobank Study. Eur. Respir. J. 2019, 54, 1802140. [Google Scholar] [CrossRef]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of Air Pollution on Asthma Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef] [PubMed]
- Chi, R.; Li, H.; Wang, Q.; Zhai, Q.; Wang, D.; Wu, M.; Liu, Q.; Wu, S.; Ma, Q.; Deng, F.; et al. Association of Emergency Room Visits for Respiratory Diseases with Sources of Ambient PM2.5. J. Environ. Sci. 2019, 86, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, S.; Tang, R.; Qiu, H.; Huang, Q.; Mason, T.; Tian, L. Major Air Pollutants and Risk of COPD Exacerbations: A Systematic Review and Meta-Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 3079–3091. [Google Scholar] [CrossRef]
- Yates, E.F.; Zhang, K.; Naus, A.; Forbes, C.; Wu, X.; Dey, T. A Review on the Biological, Epidemiological, and Statistical Relevance of COVID-19 Paired with Air Pollution. Environ. Adv. 2022, 8, 100250. [Google Scholar] [CrossRef]
- Air Quality: Commission Decides to Refer Romania. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_21_6264 (accessed on 17 December 2022).
- Hoffmann, B.; Boogaard, H.; de Nazelle, A.; Andersen, Z.J.; Abramson, M.; Brauer, M.; Brunekreef, B.; Forastiere, F.; Huang, W.; Kan, H.; et al. WHO Air Quality Guidelines 2021–Aiming for Healthier Air for All: A Joint Statement by Medical, Public Health, Scientific Societies and Patient Representative Organisations. Int. J. Public Health 2021, 66, 1604465. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; p. 1302. [Google Scholar]
- IQAir. IQAir World Air Quality Report 2021; Paper Knowledge: Toward a Media History of Documents; IQAir: Goldach, Switzerland, 2022; p. 43. [Google Scholar]
- European Environmental Agency (EEA). Air Quality in Europe 2022; Report No. 05/2022; European Environmental Agency (EEA): Copenhagen, Denmark, 2022. [Google Scholar]
- Volná, V.; Blažek, Z.; Krejčí, B. Assessment of Air Pollution by PM10 Suspended Particles in the Urban Agglomeration of Central Europe in the Period from 2001 to 2018. Urban Clim. 2021, 39, 100959. [Google Scholar] [CrossRef]
- Rodrigues, V.; Gama, C.; Ascenso, A.; Oliveira, K.; Coelho, S.; Monteiro, A.; Hayes, E.; Lopes, M. Assessing Air Pollution in European Cities to Support a Citizen Centered Approach to Air Quality Management. Sci. Total Environ. 2021, 799, 149311. [Google Scholar] [CrossRef]
- Mücke, H.-G.; Wagener, S.; Werchan, M.; Bergmann, K.-C. Measurements of Particulate Matter and Pollen in the City of Berlin. Urban Clim. 2014, 10, 621–629. [Google Scholar] [CrossRef]
- Sanda, M.; Dunea, D.; Iordache, S.; Predescu, L.; Predescu, M.; Pohoata, A.; Onutu, I. Recent Urban Issues Related to Particulate Matter in Ploiesti City, Romania. Atmosphere 2023, 14, 746. [Google Scholar] [CrossRef]
- Proorocu, M.; Odagiu, A.; Oroian, I.G.; Ciuiu, G.; Dan, V. Particulate matter status in Romanian urban areas: PM10 pollution levels in Bucharest. Environ. Eng. Manag J. 2014, 13, 3115–3122. [Google Scholar] [CrossRef]
- Lorga, G.; Raicu, C.B.; Stefan, S. Annual Air Pollution Level of Major Primary Pollutants in Greater Area of Bucharest. Atmos. Pollut. Res. 2015, 6, 824–834. [Google Scholar] [CrossRef]
- Sfîcă, L.; Iordache, I.; Ichim, P.; Leahu, A.; Cazacu, M.-M.; Gurlui, S.; Trif, C.-R. The Influence of Weather Conditions and Local Climate on Particulate Matter (PM10) Concentration in Metropolitan Area of Iasi, Romania. Present Environ. Sustain. Dev. 2018, 12, 47–69. [Google Scholar] [CrossRef]
- Dunea, D.; Iordache, S.; Radulescu, C.; Pohoata, A.; Dulama, I. A Multidimensional Approach to the Influence of Wind on the Variations of Particulate Matter and Associated Heavy Metals in Ploiesti City. Rom. J. Phys. 2016, 61, 1354–1368. [Google Scholar]
- Alotaibi, R.; Bechle, M.; Marshall, J.D.; Ramani, T.; Zietsman, J.; Nieuwenhuijsen, M.J.; Khreis, H. Traffic Related Air Pollution and the Burden of Childhood Asthma in the Contiguous United States in 2000 and 2010. Environ. Int. 2019, 127, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Quick, M.; Kaufman, J.S.; Chen, C.; Kwong, J.C.; van Donkelaar, A.; Meng, J.; Martin, R.V.; Kim, J.; Lavigne, E.; et al. Impact of Lowering Fine Particulate Matter from Major Emission Sources on Mortality in Canada: A Nationwide Causal Analysis. Proc. Natl. Acad. Sci. USA 2022, 119, e2209490119. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Stafoggia, M.; Oftedal, B.; Chen, J.; Rodopoulou, S.; Renzi, M.; Atkinson, R.W.; Bauwelinck, M.; Klompmaker, J.O.; Mehta, A.; Vienneau, D.; et al. Long-Term Exposure to Low Ambient Air Pollution Concentrations and Mortality among 28 Million People: Results from Seven Large European Cohorts within the ELAPSE Project. Lancet Planet. Health 2022, 6, e9–e18. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Xu, J.; Xu, Z.; Xia, X.; Li, B.; He, J.; Zhao, P.; Pan, J.; Zhang, D.; Su, Y.; et al. A Child with Household Transmitted COVID-19. BMC Infect. Dis. 2020, 20, 329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Y.; Feng, F.; Cheng, B.; Wang, H.; Shen, J.; Jiao, H. Association between PM10 and Specific Circulatory System Diseases in China. Sci. Rep. 2021, 11, 12129. [Google Scholar] [CrossRef] [PubMed]
- Bodor, K.; Szép, R.; Bodor, Z. The Human Health Risk Assessment of Particulate Air Pollution (PM2.5 and PM10) in Romania. Toxicol. Rep. 2022, 9, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Bodor, K.; Micheu, M.M.; Keresztesi, Á.; Birsan, M.-V.; Nita, I.-A.; Bodor, Z.; Petres, S.; Korodi, A.; Szép, R. Effects of PM10 and Weather on Respiratory and Cardiovascular Diseases in the Ciuc Basin (Romanian Carpathians). Atmosphere 2021, 12, 289. [Google Scholar] [CrossRef]
- Enescu, R.E.; Dincă, L.; Zup, M.; Davidescu, Ș.; Vasile, D. Assessment of Soil Physical and Chemical Properties among Urban and Peri-Urban Forests: A Case Study from Metropolitan Area of Brasov. Forests 2022, 13, 1070. [Google Scholar] [CrossRef]
- Maftei, C.; Muntean, R.; Poinareanu, I. The Impact of Air Pollution on Pulmonary Diseases: A Case Study from Brasov County, Romania. Atmosphere 2022, 13, 902. [Google Scholar] [CrossRef]
- Chereches, I.A.; Arion, I.D.; Muresan, I.C.; Gaspar, F. Study of the Effects of the COVID-19 Pandemic on Air Quality: A Case Study in Cluj-Napoca, Romania. Sustainability 2023, 15, 2549. [Google Scholar] [CrossRef]
- Zwanka, R.J.; Buff, C. COVID-19 Generation: A Conceptual Framework of the Consumer Behavioral Shifts to Be Caused by the COVID-19 Pandemic. J. Int. Consum. Mark. 2021, 33, 58–67. [Google Scholar] [CrossRef]
- Sarmadi, M.; Rahimi, S.; Rezaei, M.; Sanaei, D.; Dianatinasab, M. Air Quality Index Variation before and after the Onset of COVID-19 Pandemic: A Comprehensive Study on 87 Capital, Industrial and Polluted Cities of the World. Environ. Sci. Eur. 2021, 33, 134. [Google Scholar] [CrossRef]
- Jurconi, A.; Ioana Maria, P.; Manea, D.-I.; Mihai, M.; Pamfilie, R. The Impact of the “Green Transition” in the Field of Food Packaging on the Behavior of Romanian Consumers. Amfiteatru Econ. 2022, 24, 395–409. [Google Scholar] [CrossRef]
- Vasilescu, M.D.; Dimian, G.C.; Gradinaru, G.I. Green Entrepreneurship in Challenging Times: A Quantitative Approach for European Countries. Econ. Res. Istraživanja 2023, 36, 1828–1847. [Google Scholar] [CrossRef]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution. New York, USA. 2023. Available online: https://www.xlstat.com/en (accessed on 10 October 2022).
- Popa, M. Statistici Multivariate Aplicate in Psihologie; Editura Polirom: Bucharest, Romania, 2010; pp. 125–128. [Google Scholar]
- Voineagu, V.; Titan, E.; Radu, S.; Ghita, S.; Todose, D.; Boboc, C.; Pele, D. Teorie Si Practica Econometrica; Meteor Press: Bucharest, Romania, 2007; ISBN 978-973-728-240-8. [Google Scholar]
- Kim, T.K. Understanding One-Way ANOVA Using Conceptual Figures. Korean J. Anesthesiol. 2017, 70, 22. [Google Scholar] [CrossRef] [PubMed]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://webarchive.nationalarchives.gov.uk/eu-exit/https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02008L0050-20150918 (accessed on 10 October 2022).
- Exceedance of Air Quality Standards in Europe. Available online: https://www.eea.europa.eu/ims/exceedance-of-air-quality-standards (accessed on 18 October 2022).
- Bessagnet, B.; Allemand, N.; Putaud, J.-P.; Couvidat, F.; André, J.-M.; Simpson, D.; Pisoni, E.; Murphy, B.N.; Thunis, P. Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles-A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change. Appl. Sci. 2022, 12, 3623. [Google Scholar] [CrossRef] [PubMed]
- Praveen, J.K.; Michael, L.C. Kumar and Clark’s Clinical Medicine, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 10, pp. 1138–1143. [Google Scholar]
- Masri, S.; Kang, C.-M.; Koutrakis, P. Composition and Sources of Fine and Coarse Particles Collected during 2002–2010 in Boston, MA. J. Air Waste Manag. Assoc. 2015, 65, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Stone, E.A. Composition and Sources of Fine Particulate Matter across Urban and Rural Sites in the Midwestern United States. Environ. Sci. Process. Impacts 2014, 16, 1360–1370. [Google Scholar] [CrossRef]
- Yang, J.; Sakhvidi, M.J.Z.; de Hoogh, K.; Vienneau, D.; Siemiatyck, J.; Zins, M.; Goldberg, M.; Chen, J.; Lequy, E.; Jacquemin, B. Long-Term Exposure to Black Carbon and Mortality: A 28-Year Follow-up of the GAZEL Cohort. Environ. Int. 2021, 157, 106805. [Google Scholar] [CrossRef]
- Health Effects Institute. State of Global Air 2020; Special Report; Health Effects Institute: Boston, MA, USA, 2020; ISSN 2578-6873. Available online: https://www.stateofglobalair.org/ (accessed on 18 January 2023).
- Reţeaua Naţională de Monitorizare Automată a Calităţii Aerului (RNMCA)—Reteaua Nationala de Monitorizare a Calitatii Aerului–ANPM. Available online: http://www.anpm.ro/reteaua-nationala-de-monitorizare-a-calitatii-aerului/-/asset_publisher/MCtW0ySppoYG/content/reţeaua_naţională_de_monitorizare_automată_a_calităţii_aerului_%28rnmca%29_ (accessed on 18 October 2022).
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Analitis, A.; Katsouyanni, K.; Biggeri, A.; Baccini, M.; Forsberg, B.; Bisanti, L.; Kirchmayer, U.; Ballester, F.; Cadum, E.; Goodman, P.G.; et al. Effects of Cold Weather on Mortality: Results From 15 European Cities Within the PHEWE Project. Am. J. Epidemiol. 2008, 168, 1397–1408. [Google Scholar] [CrossRef]
- Birkmeyer, J.D.; Barnato, A.; Birkmeyer, N.; Bessler, R.; Skinner, J. The Impact of The COVID-19 Pandemic On Hospital Admissions In The United States. Health Aff. 2020, 39, 2010–2017. [Google Scholar] [CrossRef]
- Ii, M.; Watanabe, S. The Paradox of the COVID-19 Pandemic: The Impact on Patient Demand in Japanese Hospitals. Health Policy 2022, 126, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Brophy, S.; Kennedy, J.; Fisher, L.; Walker, A.; Mackenna, B.; Curtis, H.; Inglesby, P.; Davy, S.; Bacon, S.; et al. Impact of First UK COVID-19 Lockdown on Hospital Admissions: Interrupted Time Series Study of 32 Million People. eClinicalMedicine 2022, 49, 101462. [Google Scholar] [CrossRef]
- Gan, W.Q.; FitzGerald, J.M.; Carlsten, C.; Sadatsafavi, M.; Brauer, M. Associations of Ambient Air Pollution with Chronic Obstructive Pulmonary Disease Hospitalization and Mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 721–727. [Google Scholar] [CrossRef]
- Garshick, E. Effects of Short- and Long-Term Exposures to Ambient Air Pollution on COPD. Eur. Respir. J. 2014, 44, 558–561. [Google Scholar] [CrossRef]
- Guarnieri, M.; Balmes, J.R. Outdoor Air Pollution and Asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Kyung, S.Y.; Jeong, S.H. Particulate-Matter Related Respiratory Diseases. Tuberc. Respir. Dis. 2020, 83, 116. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global Association of Air Pollution and Heart Failure: A Systematic Review and Meta-Analysis. Lancet 2013, 382, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Pothirat, C.; Chaiwong, W.; Liwsrisakun, C.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T.; Limsukon, A.; Tajarernmuang, P.; Phetsuk, N. Acute Effects of Air Pollutants on Daily Mortality and Hospitalizations Due to Cardiovascular and Respiratory Diseases. J. Thorac. Dis. 2019, 11, 3070–3083. [Google Scholar] [CrossRef]
- Tian, Y.; Xiang, X.; Juan, J.; Sun, K.; Song, J.; Cao, Y.; Hu, Y. Fine Particulate Air Pollution and Hospital Visits for Asthma in Beijing, China. Environ. Pollut. 2017, 230, 227–233. [Google Scholar] [CrossRef]
- Alexeeff, S.E.; Liao, N.S.; Liu, X.; Van Den Eeden, S.K.; Sidney, S. Long-Term PM 2.5 Exposure and Risks of Ischemic Heart Disease and Stroke Events: Review and Meta-Analysis. J. Am. Heart Assoc. 2021, 10, e016890. [Google Scholar] [CrossRef]
- Thurston, G.D.; Burnett, R.T.; Turner, M.C.; Shi, Y.; Krewski, D.; Lall, R.; Ito, K.; Jerrett, M.; Gapstur, S.M.; Diver, W.R.; et al. Ischemic Heart Disease Mortality and Long-Term Exposure to Source-Related Components of U.S. Fine Particle Air Pollution. Environ. Health Perspect. 2016, 124, 785–794. [Google Scholar] [CrossRef]
- Niu, J.; Liberda, E.N.; Qu, S.; Guo, X.; Li, X.; Zhang, J.; Meng, J.; Yan, B.; Li, N.; Zhong, M.; et al. The Role of Metal Components in the Cardiovascular Effects of PM2.5. PLoS ONE 2013, 8, e83782. [Google Scholar] [CrossRef]
- Byrne, C.P.; Bennett, K.E.; Hickey, A.; Kavanagh, P.; Broderick, B.; O’Mahony, M.; Williams, D.J. Short-Term Air Pollution as a Risk for Stroke Admission: A Time-Series Analysis. Cerebrovasc. Dis. 2020, 49, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, J.-H.; Kim, Y.H.; Wee, J.H.; Min, C.; Han, S.-M.; Kim, S.; Choi, H.G. Short- and Long-Term Exposure to Air Pollution Increases the Risk of Stroke. Int. J. Stroke 2022, 17, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P.L.S.; Andersson, N.; Stockfelt, L.; Andersson, E.M.; Sommar, J.N.; Eneroth, K.; Gidhagen, L.; Johansson, C.; Lager, A.; Leander, K.; et al. Long-Term Exposure to Particulate Air Pollution, Black Carbon, and Their Source Components in Relation to Ischemic Heart Disease and Stroke. Environ. Health Perspect. 2019, 127, 107012. [Google Scholar] [CrossRef] [PubMed]
- Almourani, R.; Chinnakotla, B.; Patel, R.; Kurukulasuriya, L.R.; Sowers, J. Diabetes and Cardiovascular Disease: An Update. Curr. Diab. Rep. 2019, 19, 161. [Google Scholar] [CrossRef]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a Cardiovascular Risk Factor: An Overview of Global Trends of Macro and Micro Vascular Complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef]
- Münzel, T.; Sørensen, M.; Gori, T.; Schmidt, F.P.; Rao, X.; Brook, J.; Chen, L.C.; Brook, R.D.; Rajagopalan, S. Environmental Stressors and Cardio-Metabolic Disease: Part I–Epidemiologic Evidence Supporting a Role for Noise and Air Pollution and Effects of Mitigation Strategies. Eur. Heart J. 2016, 38, 550–556. [Google Scholar] [CrossRef]
- Lipfert, F.W.; Wyzga, R.E. Longitudinal Relationships between Lung Cancer Mortality Rates, Smoking, and Ambient Air Quality: A Comprehensive Review and Analysis. Crit. Rev. Toxicol. 2019, 49, 790–818. [Google Scholar] [CrossRef]
- Bade, B.C.; Cruz, C.S.D. Lung Cancer 2020. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Lequy, E.; Siemiatycki, J.; de Hoogh, K.; Vienneau, D.; Dupuy, J.-F.; Garès, V.; Hertel, O.; Christensen, J.H.; Zhivin, S.; Goldberg, M.; et al. Contribution of Long-Term Exposure to Outdoor Black Carbon to the Carcinogenicity of Air Pollution: Evidence Regarding Risk of Cancer in the Gazel Cohort. Environ. Health Perspect. 2021, 129, 37005. [Google Scholar] [CrossRef] [PubMed]
Year | Total Number of Sensors | No. of Sensors with More than 50 Measurements/Year | No. of Sensors Recording DLV Exceedances over 35 Times/Year |
---|---|---|---|
2018 (20 August–31 December) | 16 | 11 | 10 |
2019 | 20 | 17 | 10 |
2020 | 61 | 48 | 6 |
2021 | 71 | 61 | 14 |
2022 (1 January–1 June) | 106 | 68 | - |
Sensor ID | Number of Days with Measurements for PM10 | Number of Days with Measurements for PM2.5 |
---|---|---|
5629 | 1381 | 1381 |
5652 | 1379 | 1379 |
6088 | 1354 | 1354 |
6156 | 1343 | 1343 |
6509 | 1311 | 1311 |
9840 | 1293 | 1293 |
5628 | 1192 | 1192 |
8019 | 1155 | 1155 |
Sensor ID | 2018 | 2019 | 2020 | 2021 | 2022 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDR | NDLVE | % DE | NDR | NDLVE | % DE | NDR | NDLVE | % DE | NDR | NDLVE | % DE | NDR | NDLVE | % DE | |
5628 | 134 | 43 | 32 | 365 | 48 | 13 | 319 | 18 | 6 | 289 | 10 | 3 | 85 | 0 | 0 |
5629 | 133 | 48 | 36 | 365 | 72 | 20 | 366 | 43 | 12 | 365 | 29 | 8 | 152 | 2 | 1 |
5652 | 131 | 51 | 39 | 365 | 65 | 18 | 366 | 36 | 10 | 365 | 32 | 9 | 152 | 1 | 1 |
6088 | 106 | 53 | 50 | 365 | 74 | 20 | 366 | 34 | 9 | 365 | 40 | 11 | 152 | 2 | 1 |
6156 | 95 | 50 | 53 | 365 | 75 | 21 | 366 | 37 | 10 | 365 | 31 | 8 | 152 | 3 | 2 |
6509 | 64 | 45 | 70 | 365 | 64 | 18 | 365 | 24 | 7 | 365 | 22 | 6 | 152 | 0 | 0 |
8019 | - | - | - | 282 | 42 | 15 | 366 | 55 | 15 | 355 | 50 | 14 | 152 | 7 | 5 |
9840 | 96 | 56 | 58 | 314 | 77 | 25 | 366 | 33 | 9 | 365 | 29 | 8 | 152 | 2 | 1 |
Sensor ID | 2018 | 2019 | 2020 | 2021 | 2022 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDR | NDLVE | % DE | NDR | NDLVE | % DE | NDR | NDLVE | % DE | NDR | NDLVE | % DE | NDR | NDLVE | % DE | |
5628 | 134 | 56 | 42 | 365 | 72 | 20 | 319 | 24 | 8 | 289 | 17 | 6 | 85 | 1 | 1 |
5629 | 133 | 56 | 42 | 365 | 89 | 24 | 366 | 54 | 15 | 365 | 39 | 11 | 152 | 4 | 3 |
5652 | 131 | 61 | 47 | 365 | 85 | 23 | 366 | 46 | 13 | 365 | 49 | 13 | 152 | 2 | 1 |
6088 | 106 | 61 | 58 | 365 | 100 | 27 | 366 | 45 | 12 | 365 | 53 | 15 | 152 | 4 | 3 |
6156 | 95 | 60 | 63 | 365 | 97 | 27 | 366 | 47 | 13 | 365 | 54 | 15 | 152 | 3 | 2 |
6509 | 64 | 50 | 78 | 365 | 93 | 25 | 365 | 34 | 9 | 365 | 37 | 10 | 152 | 2 | 1 |
8019 | - | - | - | 282 | 56 | 20 | 366 | 69 | 19 | 355 | 66 | 19 | 152 | 8 | 5 |
9840 | 96 | 63 | 66 | 314 | 99 | 32 | 366 | 42 | 11 | 365 | 45 | 12 | 152 | 3 | 2 |
PM10 | PM2.5 | According to EU Legislation | According to WHO Guidelines | |||
---|---|---|---|---|---|---|
PM10 > 50 μg/m3 | PM2.5 >25 μg/m3 | PM10 > 45 μg/m3 | PM2.5 > 15 μg/m3 | |||
No. of sensors | 143 | 138 | 86 | 100 | 92 | 125 |
No. of records | 46,307 | 42,973 | 3981 | 8968 | 5526 | 22,493 |
PM10 | PM2.5 | ||||
---|---|---|---|---|---|
Sensor ID | No. of Exceeded Days | % DE | Sensor ID | No. of Exceeded Days | % DE |
6088 | 263 | 19% | 6088 | 839 | 62% |
6156 | 261 | 19% | 6156 | 826 | 62% |
9840 | 252 | 19% | 5652 | 791 | 57% |
5652 | 243 | 18% | 6509 | 790 | 60% |
5629 | 242 | 18% | 9840 | 773 | 60% |
6509 | 216 | 16% | 5629 | 751 | 54% |
8019 | 199 | 17% | 8019 | 675 | 58% |
5628 | 170 | 14% | 5628 | 661 | 55% |
Year | 2018 | 2019 | 2020 | 2021 | 2022 | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | |
5628 | 0 | 0 | 17 | 18 | 21 | 24 | 14 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 3 | 15 | 19 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10 | 6 | 0 | 0 | 0 | 1 | ||||||
5629 | 0 | 0 | 15 | 17 | 24 | 26 | 16 | 6 | 1 | 0 | 0 | 0 | 0 | 1 | 15 | 5 | 19 | 23 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 13 | 6 | 12 | 8 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 3 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | |
5652 | 0 | 0 | 15 | 21 | 25 | 26 | 16 | 7 | 1 | 0 | 0 | 0 | 0 | 1 | 10 | 6 | 18 | 21 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 5 | 10 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 10 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | |
6088 | 0 | 17 | 22 | 22 | 27 | 16 | 8 | 2 | 0 | 0 | 0 | 0 | 1 | 16 | 9 | 21 | 24 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 9 | 4 | 9 | 8 | 7 | 0 | 0 | 0 | 0 | 0 | 1 | 13 | 13 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | ||
6156 | 0 | 17 | 20 | 23 | 25 | 17 | 8 | 1 | 0 | 1 | 0 | 0 | 1 | 13 | 10 | 21 | 21 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 13 | 4 | 10 | 8 | 8 | 0 | 0 | 1 | 0 | 0 | 1 | 12 | 11 | 3 | 1 | 1 | 1 | 0 | 0 | 0 | ||
6509 | 2 | 26 | 22 | 24 | 21 | 9 | 3 | 0 | 0 | 0 | 0 | 1 | 11 | 7 | 17 | 20 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 5 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 10 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | |||
8019 | 4 | 3 | 0 | 0 | 0 | 0 | 1 | 16 | 8 | 24 | 26 | 9 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 17 | 8 | 12 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 1 | 11 | 16 | 6 | 4 | 3 | 1 | 0 | 0 | 0 | ||||||||
9840 | 0 | 17 | 23 | 23 | 28 | 18 | 7 | 2 | 0 | 0 | 0 | 0 | 1 | 14 | 9 | 20 | 20 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 11 | 4 | 8 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 13 | 13 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | ||
No records |
Year | 2018 | 2019 | 2020 | 2021 | 2022 | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensor | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | |
5628 | 8 | 22 | 23 | 29 | 29 | 31 | 27 | 24 | 21 | 8 | 11 | 15 | 6 | 12 | 26 | 29 | 28 | 30 | 18 | 18 | 9 | 1 | 4 | 0 | 0 | 1 | 15 | 9 | 3 | 9 | 12 | 0 | 3 | 12 | 15 | 11 | 26 | 28 | 25 | 21 | 20 | 22 | ||||||
5629 | 7 | 18 | 24 | 27 | 30 | 31 | 27 | 29 | 19 | 8 | 10 | 15 | 4 | 11 | 28 | 29 | 30 | 30 | 23 | 20 | 12 | 1 | 4 | 0 | 0 | 2 | 16 | 26 | 26 | 30 | 25 | 22 | 15 | 0 | 2 | 6 | 5 | 8 | 22 | 27 | 21 | 18 | 17 | 19 | 7 | 0 | 0 | |
5652 | 4 | 21 | 24 | 28 | 31 | 31 | 27 | 26 | 19 | 7 | 8 | 13 | 6 | 8 | 24 | 28 | 30 | 30 | 20 | 21 | 9 | 1 | 3 | 0 | 0 | 1 | 14 | 25 | 27 | 30 | 26 | 23 | 22 | 1 | 3 | 13 | 16 | 11 | 26 | 29 | 26 | 25 | 20 | 25 | 9 | 0 | 0 | |
6088 | 7 | 27 | 29 | 31 | 31 | 27 | 28 | 21 | 12 | 12 | 20 | 10 | 15 | 27 | 30 | 31 | 30 | 20 | 21 | 11 | 0 | 4 | 1 | 0 | 1 | 17 | 26 | 28 | 30 | 26 | 26 | 23 | 0 | 3 | 14 | 17 | 15 | 28 | 29 | 25 | 26 | 22 | 27 | 11 | 0 | 0 | ||
6156 | 2 | 25 | 28 | 30 | 31 | 27 | 28 | 20 | 11 | 14 | 19 | 14 | 13 | 27 | 29 | 31 | 30 | 22 | 20 | 12 | 2 | 5 | 1 | 2 | 4 | 17 | 25 | 26 | 30 | 25 | 20 | 17 | 0 | 3 | 15 | 20 | 13 | 27 | 30 | 25 | 26 | 21 | 28 | 11 | 0 | 0 | ||
6509 | 2 | 31 | 31 | 31 | 27 | 31 | 24 | 14 | 15 | 19 | 13 | 15 | 27 | 29 | 31 | 31 | 21 | 20 | 11 | 1 | 3 | 0 | 0 | 1 | 14 | 24 | 24 | 27 | 24 | 20 | 15 | 0 | 3 | 12 | 22 | 13 | 27 | 28 | 26 | 21 | 21 | 29 | 12 | 0 | 0 | |||
8019 | 7 | 19 | 14 | 12 | 17 | 10 | 16 | 27 | 30 | 31 | 30 | 23 | 22 | 13 | 3 | 3 | 1 | 1 | 3 | 16 | 29 | 27 | 30 | 28 | 26 | 20 | 0 | 3 | 11 | 16 | 18 | 20 | 30 | 27 | 28 | 23 | 29 | 12 | 0 | 0 | ||||||||
9840 | 3 | 30 | 29 | 31 | 31 | 27 | 27 | 20 | 8 | 7 | 6 | 7 | 15 | 28 | 30 | 31 | 30 | 20 | 19 | 12 | 2 | 5 | 0 | 1 | 2 | 19 | 27 | 28 | 30 | 26 | 8 | 0 | 1 | 3 | 14 | 20 | 13 | 26 | 29 | 25 | 24 | 21 | 27 | 11 | 0 | 0 | ||
No records |
PM10 Annual Limit Value 15 µg/m3 (WHO) | PM2.5 Annual Limit Value 5 μg/m3 (WHO) | |||||
---|---|---|---|---|---|---|
Average (μg/m3) | StdDev (μg/m3) | Coefficient of Variation (%) | Average (μg/m3) | StdDev (μg/m3) | Coefficient of Variation (%) | |
2019 | 33.70 | 20.46 | 61% | 23.06 | 13.34 | 58% |
2020 | 25.16 | 20.21 | 80% | 17.31 | 13.20 | 76% |
2021 | 27.48 | 15.53 | 56% | 18.29 | 9.88 | 54% |
PM10 Annual Limit Value 15 μg/m3 (WHO) | PM2.5 Annual Limit Value 5 μg/m3 (WHO) | |||||
---|---|---|---|---|---|---|
Average (μg/m3) | StdDev (μg/m3) | Coefficient of Variation (%) | Average (μg/m3) | StdDev (μg/m3) | Coefficient of Variation (%) | |
2019 | 30.74 | 15.62 | 51% | 20.76 | 9.38 | 45% |
2020 | 22.49 | 14.90 | 66% | 15.34 | 9.14 | 60% |
2021 | 26.63 | 14.01 | 53% | 17.76 | 8.89 | 50% |
Variables | Average of PM10 | Average of PM2.5 | Cardiovascular Diseases | Stroke | Respiratory Diseases | Asthma | COPD | Diabetes | Lung Cancer |
---|---|---|---|---|---|---|---|---|---|
Average of PM10 | 1 | 0.988 | 0.334 | 0.374 | 0.514 | 0.290 | 0.272 | 0.251 | 0.069 |
Average of PM2.5 | 0.988 | 1 | 0.333 | 0.367 | 0.526 | 0.294 | 0.273 | 0.276 | 0.045 |
Cardiovascular diseases | 0.334 | 0.333 | 1 | 0.750 | 0.368 | 0.918 | 0.900 | 0.902 | 0.259 |
Stroke | 0.374 | 0.367 | 0.750 | 1 | 0.430 | 0.655 | 0.640 | 0.681 | 0.300 |
Respiratory diseases | 0.514 | 0.526 | 0.368 | 0.430 | 1 | 0.223 | 0.197 | 0.371 | 0.342 |
Asthma | 0.290 | 0.294 | 0.918 | 0.655 | 0.223 | 1 | 0.954 | 0.875 | 0.093 |
COPD | 0.272 | 0.273 | 0.900 | 0.640 | 0.197 | 0.954 | 1 | 0.845 | 0.103 |
Diabetes | 0.251 | 0.276 | 0.902 | 0.681 | 0.371 | 0.875 | 0.845 | 1 | 0.110 |
Lung cancer | 0.069 | 0.045 | 0.259 | 0.300 | 0.342 | 0.093 | 0.103 | 0.110 | 1 |
Analysis of Variance (Respiratory Diseases): | ||||||
Source | DF | Sum of Squares | Mean Squares | F | Pr > F | |
Model | 1 | 8631133.097 | 8631133.097 | 6.021 | 0.019 | |
Error | 38 | 54469826.903 | 1433416.497 | |||
Corrected total | 39 | 63100960.000 | ||||
Computed against model Y = Mean(Y) | ||||||
Model Parameters (Respiratory Diseases): | ||||||
Source | Value | Standard Error | t | Pr > |t| | Lower Bound (95%) | Upper Bound (95%) |
Interception | 2892.873 | 460.694 | 6.279 | <0.0001 | 1960.247 | 3825.500 |
Average of PM2.5 | 51.411 | 20.951 | 2.454 | 0.019 | 8.998 | 93.824 |
Analysis of Variance (Respiratory Diseases): | ||||||
Source | DF | Sum of Squares | Mean Squares | F | Pr > F | |
Model | 1 | 9180878.278 | 9180878.278 | 6.470 | 0.015 | |
Error | 38 | 53920081.722 | 1418949.519 | |||
Corrected total | 39 | 63100960.000 | ||||
Computed against model Y = Mean(Y) | ||||||
Model Parameters (Respiratory Diseases): | ||||||
Source | Value | Standard Error | t | Pr > |t| | Lower Bound (95%) | Upper Bound (95%) |
Interception | 2917.708 | 437.977 | 6.662 | <0.0001 | 2031.070 | 3804.347 |
Average of PM10 | 33.615 | 13.215 | 2.544 | 0.015 | 6.862 | 60.369 |
Analysis of Variance (Cardiovascular Diseases): | ||||||
Source | DF | Sum of Squares | Mean Squares | F | Pr > F | |
Model | 1 | 16416519.921 | 16416519.921 | 4.422 | 0.042 | |
Error | 38 | 141063981.679 | 3712210.044 | |||
Corrected total | 39 | 157480501.600 | ||||
Computed against model Y = Mean(Y) | ||||||
Model Parameters (Cardiovascular Diseases): | ||||||
Source | Value | Standard Error | t | Pr > |t| | Lower Bound (95%) | Upper Bound (95%) |
Interception | 4982.227 | 741.383 | 6.720 | <0.0001 | 3481.376 | 6483.079 |
Average of PM2.5 | 70.903 | 33.716 | 2.103 | 0.042 | 2.648 | 139.157 |
Analysis of Variance (Cardiovascular Diseases): | ||||||
Source | DF | Sum of Squares | Mean Squares | F | Pr > F | |
Model | 1 | 16936285.156 | 16936285.156 | 4.579 | 0.039 | |
Error | 38 | 140544216.444 | 3698532.012 | |||
Corrected Total | 39 | 157480501.600 | ||||
Computed against model Y = Mean(Y) | ||||||
Model Parameters (Cardiovascular Diseases): | ||||||
Source | Value | Standard Error | t | Pr > |t| | Lower Bound (95%) | Upper Bound (95%) |
Interception | 5037.524 | 707.103 | 7.124 | <0.0001 | 3606.068 | 6468.979 |
Average of PM10 | 45.657 | 21.336 | 2.140 | 0.039 | 2.465 | 88.849 |
Analysis of Variance (Stroke) | ||||||
Source | DF | Sum of Squares | Mean Squares | F | Pr > F | |
Model | 1 | 896.391 | 896.391 | 4.896 | 0.033 | |
Error | 38 | 6957.209 | 183.084 | |||
Corrected total | 39 | 7853.600 | ||||
Computed against model Y = Mean(Y) | ||||||
Model Parameters (Stroke): | ||||||
Source | Value | Standard Error | t | Pr > |t| | Lower Bound (95%) | Upper Bound (95%) |
Interception | 60.897 | 5.207 | 11.696 | <0.0001 | 50.357 | 71.437 |
Average of PM2.5 | 0.524 | 0.237 | 2.213 | 0.033 | 0.045 | 1.003 |
PM2.5 Scenarios | PM10 Scenarios | |||
---|---|---|---|---|
Number of Admissions of Persons with: | Optimistic | Pessimistic | Optimistic | Pessimistic |
Minimum Value 0.48 µg/m3 | Maximum Value 47.15 µg/m3 | Minimum Value 0.71 µg/m3 | Maximum Value 73.22 µg/m3 | |
Respiratory diseases | 2918 | 5317 | 2942 | 5379 |
Cardiovascular diseases | 5016 | 8325 | 5070 | 8381 |
Cerebrovascular diseases | 61 | 86 | 61 | 87 |
PM2.5 Scenarios | PM10 Scenarios | |||
---|---|---|---|---|
Number of Admissions of Persons with: | Optimistic | Pessimistic | Optimistic | Pessimistic |
Minimum Monthly Value 8.258 µg/m3 | Maximum Monthly Value 41.488 µg/m3 | Minimum Monthly Value 11.728 µg/m3 | Maximum Monthly Value 64.667 µg/m3 | |
Respiratory diseases | 3317 | 5024 | 3312 | 5092 |
Cardiovascular diseases | 5568 | 7921 | 5573 | 7990 |
Cerebrovascular diseases | 65 | 83 | 65 | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahler, B.; Băiceanu, D.; Panciu, T.C.; Florea, R.M.; Iorga, A.L.; Gnat, M.; German, C.F.; Pârvu, S.; Paraschiv, D.; Manea, D.; et al. Air Pollutants and Their Impact on Chronic Diseases—A Retrospective Study in Bucharest, Romania. Atmosphere 2023, 14, 867. https://doi.org/10.3390/atmos14050867
Mahler B, Băiceanu D, Panciu TC, Florea RM, Iorga AL, Gnat M, German CF, Pârvu S, Paraschiv D, Manea D, et al. Air Pollutants and Their Impact on Chronic Diseases—A Retrospective Study in Bucharest, Romania. Atmosphere. 2023; 14(5):867. https://doi.org/10.3390/atmos14050867
Chicago/Turabian StyleMahler, Beatrice, Dragoș Băiceanu, Traian Constantin Panciu, Radu Marian Florea, Ana Luiza Iorga, Marcin Gnat, Cornelia Florina German, Simona Pârvu, Dorel Paraschiv, Daniela Manea, and et al. 2023. "Air Pollutants and Their Impact on Chronic Diseases—A Retrospective Study in Bucharest, Romania" Atmosphere 14, no. 5: 867. https://doi.org/10.3390/atmos14050867
APA StyleMahler, B., Băiceanu, D., Panciu, T. C., Florea, R. M., Iorga, A. L., Gnat, M., German, C. F., Pârvu, S., Paraschiv, D., Manea, D., Mihai, M., Ibraim, E., Timar, B., & Mihălțan, F. D. (2023). Air Pollutants and Their Impact on Chronic Diseases—A Retrospective Study in Bucharest, Romania. Atmosphere, 14(5), 867. https://doi.org/10.3390/atmos14050867