Potential Source Area and Transport Route of Atmospheric Particulates in Xi’an, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model
2.3.2. Trajectory Clustering
2.3.3. Potential Source Contribution Function (PSCF) Method
2.3.4. Concentration-Weight Trajectory (CWT) Method
3. Results and Discussion
3.1. Overview of Air Particulate Matter in Xi’an
3.2. Linear Relationship between PM2.5 and PM10
3.3. Backward Trajectory Distribution Characteristics
3.4. PSCF Analyses
3.5. CWT Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Kiesewetter, G.; Klimont, Z.; Cofala, J.; Heyes, C.; Schopp, W.; Zhu, T.; Cao, G.Y.; Sanabria, A.G.; Sander, R.; et al. Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China. Environ. Int. 2019, 125, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Timonen, K.L.; Vanninen, E.; Hartog, J.D.; Ibald-Mulli, A.; Brunekreef, B.; Gold, D.R.; Heinrich, J.; Hoek, G.; Lanki, T.; Peters, A.; et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 332–341. [Google Scholar] [CrossRef]
- Hong, H.; Wan, X.Y.; Chen, T.T.; Zou, C.W. Update on the toxicological effects and mechanism of PM2.5. J. Earth Environ. 2020, 11, 125–142. (In Chinese) [Google Scholar]
- Cheriyan, D.; Hyun, K.Y.; Jaegoo, H.; Choi, J.H. Assessing the distributional characteristics of PM10, PM2.5, and PM1 exposure profile produced and propagated from a construction activity. J. Clean. Prod. 2020, 276, 124335. [Google Scholar] [CrossRef]
- Hoek, G.; Pattenden, S.; Willers, S.; Antova, T.; Fabianova, E.; Braun-Fahrlander, C.; Forastiere, F.; Gehring, U.; Luttmann-Gibson, H.; Grize, L.; et al. PM10, and children’s respiratory symptoms and lung function in the PATY study. Eur. Respir. J. 2012, 40, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; You, J.; Zhi, C.X.; Li, L. The toxicity of ambient fine particulate matter (PM2.5) to vascular endothelial cells. J. Appl. Toxicol. 2021, 41, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.C.; Wang, D.Q.; Chen, Z.L. Characteristics and transportation pathways and potential sources of a severe PM2.5 episodes during winter in Beijing. China Environ. Sci. 2016, 36, 1931–1937. (In Chinese) [Google Scholar]
- Owen, R.C.; Cooper, O.R.; Stohl, A.; Honrath, R.E. An analysis of the mechanisms of North American pollutant transport to the central North Atlantic lower free troposphere. J. Geophys. Res. Atmos. 2006, 111, D23S58. [Google Scholar] [CrossRef]
- Wang, L.L.; Wang, Y.S.; Sun, Y.; Li, Y.Y. Using Synoptic Classification and Trajectory Analysis to Assess Air Quality during the Winter Heating Period in Urumqi, China. Adv. Atmos. Sci. 2012, 29, 307–319. (In Chinese) [Google Scholar] [CrossRef]
- Park, R.J. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. Atmos. 2003, 109, D15204. [Google Scholar] [CrossRef]
- Shanavas, A.K.; Zhou, C.L.; Menon, R.; Hopke, P.K. PM10 source identification using the trajectory based potential source apportionment (TraPSA) toolkit at Kochi, India. Atmos. Pollut. Res. 2020, 11, 1535–1542. [Google Scholar] [CrossRef]
- Sun, B.; Guo, L.X.; Wang, Q.; Liu, Y.F. The Satisfaction Survey of Air Quality in Xi’an City Based on the Perspective of Residents. J. Xianyang Norm. Univ. 2021, 36, 61–63. (In Chinese) [Google Scholar]
- Ma, B.B.; Wang, L.J.; Tao, W.D.; Liu, M.M.; Zhang, P.Q.; Zhang, S.W.; Li, X.P.; Lu, X.W. Phthalate esters in atmospheric PM2.5 and PM10 in the semi-arid city of Xi’an, Northwest China: Pollution characteristics, sources, health risks, and relationships with meteorological factors. Chemosphere 2020, 242, 125226. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Duan, K.Q. Analysis of seasonal primary pollutants and their potential source areas of Xi’an in 2017 based on HYSPLIT model. J. Lanzhou Univ. (Nat. Sci.) 2020, 56, 243–252. (In Chinese) [Google Scholar]
- Guo, Q.Y.; Yang, X.C.; Wu, Q.Z.; Du, M.M.; Zhang, Y.M. An analysis of PM2.5 regional sources from heavy pollution in the winter of Xi’an based on numerical simulation. Acta Sci. Circumstantiae 2020, 40, 3103–3111. [Google Scholar]
- Su, L.; Yuan, Z.B.; Fung, J.C.H.; Lau, A.K.H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 2015, 506, 527–537. [Google Scholar] [CrossRef]
- Cui, L.K.; Song, X.Q.; Zhong, G.Q. Comparative Analysis of Three Methods for HYSPLIT Atmospheric Trajectories Clustering. Atmosphere 2021, 12, 698. [Google Scholar] [CrossRef]
- Sha, X.Z.; Chu, R.H.; Li, M.; Xiao, Y.; Ding, J.F.; Feng, L.S. Transmission of Seeding Agent for Aircraft Precipitation Enhancement Based on the HYSPLIT Model. Atmosphere 2022, 13, 1508. [Google Scholar] [CrossRef]
- Xu, Y.N.; Chen, C.; Li, Q.K.; Wang, J.Y. Analysis of PM2.5 and PM10 Pollution Characteristics during Heating Period in Shenyang. J. Eng. Therm. Energy Power 2017, 32, 121–125. [Google Scholar]
- Qor-el-aine, A.; Beres, A.; Geczi, G. Dust storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) using HYSPLIT. Atmos. Sci. Lett. 2022, 23, e1076. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorol. Appl. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, T.S.; Xiang, Y.; Lv, L.H.; Fan, G.Q.; Ou, J.P. Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network. Sci. Total Environ. 2020, 751, 141740. [Google Scholar] [CrossRef] [PubMed]
- Lowell, L.A.; William, C.M.; Willy, Z.S. A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar]
- Dimitriou, K.; Kassomenos, P. Combining AOT, Angstrom Exponent and PM concentration data, with PSCF model, to distinguish fine and coarse aerosol intrusions in Southern France. Atmos. Res. 2016, 172, 74–82. [Google Scholar] [CrossRef]
- Zachary, M.M.; Lun, Y.; Zacharia, M. Application of PSCF and CWT to Identify Potential Sources of Aerosol Optical Depth in ICIPE Mbita. Open Access Libr. J. 2018, 5, 1–12. [Google Scholar] [CrossRef]
- Mcgowan, H.; Clark, A. Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmos. Environ. 2008, 42, 6915–6925. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Harris, J.M. Source Regions for Atmospheric Aerosol Measured at Barrow, Alaska. Environ. Sci. Technol. 2001, 35, 4214–4226. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Arimoto, R. The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring. Sci. Total Environ. 2006, 368, 875–883. [Google Scholar] [CrossRef]
- Hopke, P.K.; Ning, G.; Cheng, M.D. Combining chemical and meteorological data to infer source areas of airborne pollutants. Chemom. Intell. Lab. Syst. 1993, 19, 187–199. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Stohl, A. Trajectory statistics—A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579–587. [Google Scholar] [CrossRef]
- Kumar, R.; Lee, J.A.; Delle Monache, L.; Alessandrini, S. Effect of Meteorological Variability on Fine Particulate Matter Simulations Over the Contiguous United States. J. Geophys. Res. Atmos. 2019, 124, 5669–5694. [Google Scholar] [CrossRef]
- Rabha, S.; Saikia, B.K.; Singh, G.K.; Gupta, T. Meteorological Influence and Chemical Compositions of Atmospheric Particulate Matters in an Indian Urban Area. ACS Earth Space Chem. 2021, 5, 1686–1694. [Google Scholar] [CrossRef]
- Mcnider, R.T.; Pour-Biazar, A. Meteorological modeling relevant to mesoscale and regional air quality applications: A review. J. Air Waste Manag. Assoc. 2020, 70, 2–43. [Google Scholar] [CrossRef]
- Reynolds, D.R.; Chapman, J.W.; Edwards, A.S.; Smith, A.D.; Wood, C.R.; Barlow, J.F.; Woiwod, I.P. Radar studies of the vertical distribution of insects migrating over southern Britain: The influence of temperature inversions on nocturnal layer concentrations. Bull. Entomol. Res. 2005, 95, 259–274. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.B.; Li, Z.Q.; Wang, P.C.; Fan, X.H.; He, W.Y.; Zhang, J.Q. Analysis of Low-level Temperature Inversions and Their Effects on Aerosols in the Lower Atmosphere. Adv. Atmos. Sci. 2019, 36, 1235–1250. [Google Scholar] [CrossRef]
- Wang, Y.F.; Fu, Q.; Zhao, M.N.; Gao, F.; Di, H.G.; Song, Y.H.; Hua, D.X. A UV multifunctional Raman lidar system for the observation and analysis of atmospheric temperature, humidity, aerosols and their conveying characteristics over Xi’an. J. Quant. Spectrosc. Radiat. Transf. 2017, 205, 114–126. [Google Scholar] [CrossRef]
- Choi, H. Comparison of PM1, PM2.5, PM10 Concentrations in a Mountainous Coastal City, Gangneung Before and After the Yellow Dust Event in Spring. J. Environ. Sci. Int. 2008, 17, 633–645. [Google Scholar]
- Hu, Y.J.; Jiang, N. Influence of dust storm on atmospheric environment quality in Xi’an, China. J. Desert Res. 2020, 40, 53–60. (In Chinese) [Google Scholar]
- Tan, J.H.; Zhang, L.M.; Zhou, X.M.; Duan, J.C.; Li, Y.; Hu, J.N.; He, K.B. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China. Sci. Total Environ. 2017, 601–602, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meng, R.L.; Cao, L.; Gao, F.; Chen, H.; Li, Y.H.; Zhang, J.Y.; Yan, D.J.; Liu, X.; Niu, T.T.; et al. Influence of dust events on air guality of shaanxi province from 2016 to 2020. J. Desert Res. 2022, 42, 130–138. (In Chinese) [Google Scholar]
- Wei, N.; Wang, N.L.; Huang, X.; Liu, P.P.; Chen, L. The effects of terrain and atmospheric dynamics on cold season heavy haze in the Guanzhong Basin of China. Atmos. Pollut. Res. 2020, 11, 1805–1819. [Google Scholar] [CrossRef]
- Zhao, T.; Bai, H.Y.; Yuan, Y.; Deng, C.H.; Qi, G.Z.; Zhai, D.P. Spatio-temporal differentiation of climate warming (1959–2016) in the middle Qinling Mountains of China. J. Geogr. Sci. 2020, 30, 657–668. [Google Scholar] [CrossRef]
Season | Clusters | Track Region | All Tracks | ||
---|---|---|---|---|---|
The Percentage of All Trajectories (%) | Mean Concentrations of PM2.5 (μg/m3) | Mean Concentrations of PM10 (μg/m3) | |||
Spring | 1 | Central Gansu, southern Ningxia, Baoji | 41.9 | 39.7 | 128.5 |
2 | Western Inner Mongolia, Central and Northern Shaanxi | 13.1 | 36.1 | 94.9 | |
3 | Northwest Henan, Weinan | 27.1 | 40.7 | 99.7 | |
4 | Ankang, Shangluo | 17.9 | 49.9 | 122.8 | |
Summer | 1 | Western Inner Mongolia, central and southern Ningxia, Baoji | 12.7 | 21.4 | 58.8 |
2 | Central Inner Mongolia and central and northern Shaanxi | 10.7 | 16.4 | 44.3 | |
3 | Northwest Henan, Weinan | 21.2 | 22.4 | 51.5 | |
4 | Northwest Hubei, Shangluo | 34.8 | 23.6 | 48.9 | |
5 | Central Chongqing, Ankang | 20.6 | 22.1 | 46.5 | |
Autumn | 1 | North-central Gansu, south-central Ningxia, Tongchuan | 28.0 | 35.0 | 85.6 |
2 | Western Inner Mongolia, Central and Northern Shaanxi | 11.6 | 34.6 | 67.4 | |
3 | Northwest Henan, Weinan | 29.3 | 35.0 | 58.0 | |
4 | Western Hubei, Ankang, Shangluo | 31.1 | 58.6 | 107.1 | |
Winter | 1 | Eastern Xinjiang, western Gansu, Baoji | 33.2 | 19.6 | 124.0 |
2 | Western Inner Mongolia, northern Ningxia, central Shaanxi | 21.7 | 62.4 | 105.6 | |
3 | Central and southern Shanxi, Shangluo | 29.7 | 97.6 | 120.8 | |
4 | Northwest Hubei, Ankang | 15.5 | 127.4 | 160.7 | |
Year | 1 | Gansu, southern Ningxia, Baoji | 22.4 | 47.2 | 111.6 |
2 | Western Inner Mongolia, north-central Ningxia, central Shaanxi | 21.5 | 37.1 | 98.2 | |
3 | Central and southern Shanxi, northwest Henan, Weinan | 23.8 | 42.9 | 93.8 | |
4 | Northwest Hubei, Shangluo | 18.7 | 42.5 | 88.1 | |
5 | Chongqing North, Ankang | 13.6 | 44.0 | 88.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Hu, B.; Li, P.; Li, T.; Li, C.; Jiang, Y.; Meng, Y. Potential Source Area and Transport Route of Atmospheric Particulates in Xi’an, China. Atmosphere 2023, 14, 811. https://doi.org/10.3390/atmos14050811
Zhao B, Hu B, Li P, Li T, Li C, Jiang Y, Meng Y. Potential Source Area and Transport Route of Atmospheric Particulates in Xi’an, China. Atmosphere. 2023; 14(5):811. https://doi.org/10.3390/atmos14050811
Chicago/Turabian StyleZhao, Binhua, Bingze Hu, Peng Li, Tanbao Li, Caiwen Li, Ying Jiang, and Yongxia Meng. 2023. "Potential Source Area and Transport Route of Atmospheric Particulates in Xi’an, China" Atmosphere 14, no. 5: 811. https://doi.org/10.3390/atmos14050811
APA StyleZhao, B., Hu, B., Li, P., Li, T., Li, C., Jiang, Y., & Meng, Y. (2023). Potential Source Area and Transport Route of Atmospheric Particulates in Xi’an, China. Atmosphere, 14(5), 811. https://doi.org/10.3390/atmos14050811