Estimation and Analysis of Seasonal Rainfall Distribution and Potential of Türkiye and Its 25 Main Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Ordinary Kriging (OK)
2.2.2. Empirical Bayesian Kriging (EBK)
- A semivariogram model is predicted by utilizing known rainfall data.
- Using this predicted semivariogram model, a new rainfall value at each input location is simulated.
- A new semivariogram model is estimated utilizing the simulated data. Then, utilizing the Bayes’ rule, the weights of this new semivariogram are calculated. Bayes’ rule measures the likelihood of an estimated semivariogram to simulate measured data.
2.2.3. Cross-Validation
3. Results
4. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The United Nations World Water Development Report 2021: Valuing Water. UNESCO, Paris. Available online: https://www.unwater.org/publications/un-world-water-development-report-2021.pdf (accessed on 16 January 2023).
- The United Nations World Water Development Report 2020: Water and Climate Change. UNESCO, Paris. Available online: https://www.unwater.org/publications/un-world-water-development-report-2020.pdf (accessed on 16 January 2023).
- Organization for Economic Co-Operation and Development. OECD Environmental Outlook to 2050: The Consequences of Inaction. Key Facts and Figures. Paris, OECD Publishing. 2012. Available online: www.oecd.org/env/indicators-modelling-outlooks/49910023.pdf. (accessed on 16 January 2023).
- International Energy Agency (IEA). Water Energy Nexus, Excerpt from the World Energy Outlook 2016. Organisation for Economic Co-Operation and Development, Paris. Available online: www.iea.org/reports/water-energy-nexus. (accessed on 16 January 2023).
- Available online: https://pure.iiasa.ac.at/id/eprint/13008/1/WP-16-006.pdf (accessed on 16 January 2023).
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef]
- Türkeş, M. Impacts of climate change on food security and agricultural production: A scientific review. Aegean Geogr. J. 2020, 29, 125–149. [Google Scholar]
- Gürkan, H.; Arabacı, H.; Demircan, M.; Eskioğlu, O.; Şensoy, S.; Yazıcı, B. Temperature and precipitation projections based on GFDL-ESM2M using RCP4.5 and RCP8.5 scenarios for Turkey. Turk. J. Geogr. Sci. 2016, 14, 77–88. [Google Scholar] [CrossRef]
- Demircan, M.; Gürkan, H.; Eskioğlu, O.; Arabacı, H.; Coşkun, M. Climate change projections for Turkey: Three models and two scenarios. Turk. J. Water Sci. Manag. 2017, 1, 22–43. [Google Scholar] [CrossRef]
- Goovaerts, P. Kriging and semivariogram deconvolution in the presence of irregular geographical units. Math Geosci. 2008, 40, 101–128. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley: Hoboken, NJ, USA, 2007; pp. 153–194. ISBN 978-0-470-51727-7. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to Hydrological Practices; WMO-No:168:; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Pellicone, G.; Caloiero, T.; Modica, G.; Guagliardi, I. Application of several spatial interpolation techniques to monthly rainfall data in the Calabria region (southern Italy). Int. J. Climatol. 2018, 38, 3651–3666. [Google Scholar] [CrossRef]
- Lloyd, C. Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom. Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 30, 390–405. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Dirks, K.N.; Hay, J.E.; Stow, C.D.; Harris, D. High-resolution studies of rainfall on Norfolk Island, part II: Interpolation of rainfall data. J. Hydrol. 1998, 208, 187–193. [Google Scholar] [CrossRef]
- Borges, P.A.; Franke, J.; da Anunciação, Y.M.T.; Weiss, H.; Bernhofer, C. Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor. Appl. Climatol. 2016, 123, 335–348. [Google Scholar] [CrossRef]
- Frazier, A.G.; Giambelluca, T.W.; Diaz, H.F.; Needham, H.L. Comparison of geostatistical approaches to spatially interpolate month–year rainfall for the Hawaiian Islands. Int. J. Climatol. 2016, 36, 1459–1470. [Google Scholar] [CrossRef]
- Hurtado, S.I.; Zaninelli, P.G.; Agosta, E.A.; Ricetti, L. Infilling methods for monthly precipitation records with poor station network density in Subtropical Argentina. Atmos. Res. 2021, 254, 105482. [Google Scholar] [CrossRef]
- Amini, M.A.; Torkan, G.; Eslamian, S.; Zareian, M.J.; Adamowski, J.F. Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales. Acta Geophys. 2019, 67, 191–203. [Google Scholar] [CrossRef]
- Rata, M.; Douaoui, A.; Larid, M.; Douaik, A. Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theor. Appl. Climatol. 2020, 141, 1009–1024. [Google Scholar] [CrossRef]
- Antal, A.; Guerreiro, P.M.P.; Cheval, S. Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal. Theor. Appl. Climatol. 2021, 145, 1193–1206. [Google Scholar] [CrossRef]
- Yang, R.; Xing, B.A. Comparison of the performance of different interpolation methods in replicating rainfall magnitudes under different climatic conditions in Chongqing Province (China). Atmosphere 2021, 12, 1318. [Google Scholar] [CrossRef]
- Caloiero, T.; Pellicone, G.; Modica, G.; Guagliardi, I. Comparative analysis of different spatial interpolation methods applied to monthly rainfall as support for landscape management. Appl. Sci. 2021, 11, 9566. [Google Scholar] [CrossRef]
- Fung, K.F.; Chew, K.S.; Huang, Y.F.; Ahmed, A.N.; Teo, F.Y.; Ng, J.L.; Elshafie, A. Evaluation of spatial interpolation methods and spatiotemporal modeling of rainfall distribution in Peninsular Malaysia. Ain Shams Eng. J. 2022, 13, 3972–3983. [Google Scholar] [CrossRef]
- Aksu, H.H. Basin-based precipitation potential of Turkey. Arab. J. Geosci. 2021, 14, 2470. [Google Scholar] [CrossRef]
- Katipoğlu, O.M. Spatial analysis of seasonal precipitation using various interpolation methods in the Euphrates basin, Turkey. Acta Geophys. 2022, 70, 859–878. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Forestry (MAF). General Directorate of Water Management. Available online: https://www.tarimorman.gov.tr/SYGM/Menu/96/Iklim-Degisikligi-Ve-Uyum-Kitabi. (accessed on 16 January 2023).
- Li, L.; Revesz, P. Interpolation methods for spatio-temporal geographic data. Comput. Environ. Urban Syst. 2004, 28, 201–227. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997; pp. 132–139. [Google Scholar]
- Gupta, A.; Kamble, T.; Machiwal, D. Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India. Environ. Earth Sci. 2017, 76, 1–16. [Google Scholar] [CrossRef]
- Li, Z.; Tao, H.; Zhao, D.; Li, H. Three-dimensional empirical Bayesian kriging for soil PAHs interpolation considering the vertical soil lithology. Catena 2022, 212, 106098. [Google Scholar] [CrossRef]
- Gribov, A.; Krivoruchko, K. Empirical Bayesian kriging implementation and usage. Sci. Total Environ. 2020, 722, 137290. [Google Scholar] [CrossRef]
- Krivoruchko, K.; Gribov, A. Evaluation of empirical Bayesian kriging. Spat. Stat. 2019, 32, 100368. [Google Scholar] [CrossRef]
- Zou, W.; Yin, S.; Wang, W. Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. J. Hydrol. 2021, 598, 126273. [Google Scholar] [CrossRef]
- Krivoruchko, K. Empirical Bayesian Kriging; ESRI: Redlands, CA, USA, 2012; pp. 6–10. [Google Scholar]
- Berndt, C.; Haberlandt, U. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density. J. Hydrol. Reg. Stud. 2018, 15, 184–202. [Google Scholar] [CrossRef]
- Turkeş, M. Climate and Drought in Turkey. In Water Resources of Turkey; Harmancioglu, N., Altinbilek, D., Eds.; Springer: Cham, Switzerland, 2020; Volume 2, pp. 85–125. [Google Scholar]
- Turkeş, M. Climatology and Meteorology; Kriter Publishing: İstanbul, Türkiye, 2010; p. 384. [Google Scholar]
- Çıtakoğlu, H.; Çetin, M.; Cobaner, M.; Haktanır, T. Modeling of seasonal precipitation with geostatistical techniques and its estimation at ungauged locations. Tek. Dergi 2017, 28, 7725–7745. [Google Scholar]
- Selek, B.; Aksu, H. Water Resources Potential of Turkey. In Water Resources of Turkey; Harmancioglu, N., Altinbilek, D., Eds.; Springer: Cham, Switzerland, 2020; Volume 2, pp. 241–256. [Google Scholar]
Season | Min. | Max. | Amp. | Mean | Std. Dev. | First Quartile | Median | Third Quartile |
---|---|---|---|---|---|---|---|---|
Spring | 88.6 | 437.0 | 348.4 | 175.7 | 55.5 | 139.8 | 160.6 | 199.0 |
Summer | 2.2 | 508.8 | 506.6 | 64.5 | 65.0 | 28.8 | 49.2 | 74.7 |
Fall | 49.3 | 856.2 | 806.9 | 155.4 | 99.6 | 95.8 | 129.7 | 183.0 |
Winter | 44.6 | 869.7 | 825.1 | 246.7 | 145.7 | 128.6 | 218.4 | 322.5 |
OK | EBK | |||||
---|---|---|---|---|---|---|
Season | MAE | RMSE | R2 | MAE | RMSE | R2 |
Spring | 27.21 | 38.56 | 0.52 | 24.42 | 34.34 | 0.62 |
Summer | 12.48 | 23.44 | 0.88 | 10.97 | 20.29 | 0.92 |
Fall | 28.35 | 46.61 | 0.78 | 23.47 | 36.33 | 0.87 |
Winter | 53.85 | 77.13 | 0.75 | 48.05 | 69.27 | 0.82 |
Basin Number | Basin Name | Basin Area (km2) | Spring | Summer | Fall | Winter | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (mm) | Volume (Billion m3) | Mean (mm) | Volume (Billion m3) | Mean (mm) | Volume (Billion m3) | Mean (mm) | Volume (Billion m3) | |||
1 | Meriç-Ergene | 14,510.7 | 149.0 | 2.16 | 89.2 | 1.29 | 175.5 | 2.55 | 206.2 | 2.99 |
2 | Marmara | 23,113.7 | 163.6 | 3.78 | 91.3 | 2.11 | 216.3 | 5.00 | 271.6 | 6.28 |
3 | Susurluk | 24,304.2 | 174.0 | 4.23 | 56.3 | 1.37 | 158.8 | 3.86 | 254.8 | 6.19 |
4 | North Aegean | 9963.6 | 157.0 | 1.56 | 29.7 | 0.30 | 162.0 | 1.61 | 302.8 | 3.02 |
5 | Gediz | 16,981.4 | 161.3 | 2.74 | 34.7 | 0.59 | 131.0 | 2.22 | 275.6 | 4.68 |
6 | Little Meander | 7027.1 | 161.1 | 1.13 | 16.5 | 0.12 | 154.2 | 1.08 | 362.9 | 2.55 |
7 | Big Meander | 26,017.1 | 155.7 | 4.05 | 40.5 | 1.05 | 125.7 | 3.27 | 273.2 | 7.11 |
8 | West Mediterranean | 21,131.2 | 163.3 | 3.45 | 26.1 | 0.55 | 172.2 | 3.64 | 440.0 | 9.30 |
9 | Antalya | 20,251.9 | 215.5 | 4.36 | 41.1 | 0.83 | 200.5 | 4.06 | 480.1 | 9.72 |
10 | Burdur | 6273.8 | 138.3 | 0.87 | 51.4 | 0.32 | 94.9 | 0.60 | 170.0 | 1.07 |
11 | Akarçay | 7954.5 | 145.7 | 1.16 | 61.1 | 0.49 | 94.0 | 0.75 | 143.0 | 1.14 |
12 | Sakarya | 63,242.9 | 142.2 | 8.99 | 72.7 | 4.60 | 102.8 | 6.50 | 150.0 | 9.49 |
13 | West Black Sea | 28,968.4 | 172.1 | 4.99 | 142.1 | 4.12 | 207.4 | 6.01 | 214.2 | 6.21 |
14 | Yeşilırmak | 39,620.2 | 174.0 | 6.89 | 81.5 | 3.23 | 130.2 | 5.16 | 138.0 | 5.47 |
15 | Kızılırmak | 82,082.5 | 152.6 | 12.53 | 69.8 | 5.73 | 95.4 | 7.83 | 123.4 | 10.13 |
16 | Konya | 49,805.3 | 131.3 | 6.54 | 39.5 | 1.97 | 86.2 | 4.29 | 138.8 | 6.91 |
17 | East Mediterranean | 21,751.2 | 148.1 | 3.22 | 24.5 | 0.53 | 142.6 | 3.10 | 327.4 | 7.12 |
18 | Seyhan | 22,120.8 | 185.7 | 4.11 | 48.2 | 1.07 | 118.7 | 2.63 | 218.3 | 4.83 |
19 | Asi | 7904.2 | 220.2 | 1.74 | 32.1 | 0.25 | 183.7 | 1.45 | 347.8 | 2.75 |
20 | Ceyhan | 21,482.6 | 222.8 | 4.79 | 36.6 | 0.79 | 145.3 | 3.12 | 289.4 | 6.22 |
21 | Euphrates-Tigris | 175,881.5 | 203.9 | 35.86 | 27.0 | 4.75 | 118.2 | 20.79 | 213.9 | 37.62 |
22 | East Black Sea | 22,876.1 | 219.5 | 5.02 | 197.5 | 4.52 | 299.7 | 6.86 | 243.6 | 5.57 |
23 | Çoruh | 20,259.8 | 170.7 | 3.46 | 131.6 | 2.67 | 141.7 | 2.87 | 129.4 | 2.62 |
24 | Aras | 28,041.2 | 158.3 | 4.44 | 131.4 | 3.68 | 98.5 | 2.76 | 74.9 | 2.10 |
25 | Van | 17,977 | 183.3 | 3.30 | 43.3 | 0.78 | 113.4 | 2.04 | 129.6 | 2.33 |
Turkey (total) | 780,043 | 173.6 | 135.42 | 61.7 | 48.13 | 133.6 | 104.21 | 208.8 | 162.87 |
Spring | Summer | Fall | Winter | |||||
---|---|---|---|---|---|---|---|---|
Basin | Mean (mm) | Volume (Billion m3) | Mean (mm) | Volume (Billion m3) | Mean (mm) | Volume (Billion m3) | Mean (mm) | Volume (Billion m3) |
Meriç-Ergene | 149.5 | 2.17 | 89.4 | 1.30 | 178.2 | 2.59 | 207.6 | 3.01 |
Marmara | 165.8 | 3.83 | 94.1 | 2.17 | 227.5 | 5.26 | 280.0 | 6.47 |
Susurluk | 176.6 | 4.29 | 58.0 | 1.41 | 157.9 | 3.84 | 259.5 | 6.31 |
North Aegean | 158.5 | 1.58 | 29.7 | 0.30 | 161.1 | 1.61 | 301.0 | 3.00 |
Gediz | 163.3 | 2.77 | 34.8 | 0.59 | 133.8 | 2.27 | 281.6 | 4.78 |
Little Meander | 167.1 | 1.17 | 16.9 | 0.12 | 156.7 | 1.10 | 378.8 | 2.66 |
Big Meander | 159.4 | 4.15 | 41.2 | 1.07 | 130.6 | 3.40 | 287.1 | 7.47 |
West Mediterranean | 167.5 | 3.54 | 27.6 | 0.58 | 181.6 | 3.84 | 458.1 | 9.68 |
Antalya | 206.9 | 4.19 | 40.7 | 0.82 | 206.3 | 4.18 | 481.7 | 9.76 |
Burdur | 141.7 | 0.89 | 50.2 | 0.31 | 91.1 | 0.57 | 169.2 | 1.06 |
Akarçay | 145.1 | 1.15 | 63.7 | 0.51 | 96.3 | 0.77 | 142.3 | 1.13 |
Sakarya | 143.5 | 9.08 | 73.2 | 4.63 | 103.3 | 6.53 | 149.3 | 9.44 |
West Black Sea | 171.7 | 4.97 | 146.5 | 4.24 | 221.2 | 6.41 | 224.8 | 6.51 |
Yeşilırmak | 177.3 | 7.02 | 83.8 | 3.32 | 132.9 | 5.27 | 142.3 | 5.64 |
Kızılırmak | 153.1 | 12.57 | 69.4 | 5.70 | 99.1 | 8.13 | 129.3 | 10.61 |
Konya | 131.6 | 6.55 | 38.1 | 1.90 | 83.4 | 4.15 | 138.3 | 6.89 |
East Mediterranean | 150.3 | 3.27 | 27.4 | 0.60 | 147.8 | 3.21 | 332.7 | 7.24 |
Seyhan | 191.6 | 4.24 | 48.7 | 1.08 | 121.4 | 2.69 | 226.3 | 5.01 |
Asi | 224.8 | 1.78 | 33.8 | 0.27 | 183.8 | 1.45 | 355.3 | 2.81 |
Ceyhan | 221.9 | 4.77 | 36.8 | 0.79 | 145.3 | 3.12 | 286.9 | 6.16 |
Euphrates-Tigris | 205.6 | 36.16 | 26.9 | 4.73 | 116.9 | 20.56 | 213.6 | 37.57 |
East Black Sea | 221.6 | 5.07 | 213.1 | 4.87 | 323.7 | 7.40 | 255.3 | 5.84 |
Çoruh | 177.5 | 3.60 | 135.4 | 2.74 | 162.1 | 3.28 | 148.6 | 3.01 |
Aras | 161.3 | 4.52 | 126.3 | 3.54 | 99.1 | 2.78 | 81.3 | 2.28 |
Van | 184.9 | 3.32 | 44.7 | 0.80 | 113.8 | 2.05 | 128.7 | 2.31 |
Turkey (total) | 175.2 | 136.66 | 62.6 | 48.83 | 136.8 | 106.71 | 213.0 | 166.15 |
Basin | Spring (%) | Summer (%) | Fall (%) | Winter (%) |
---|---|---|---|---|
Meriç-Ergene | 24.0 | 14.4 | 28.3 | 33.3 |
Marmara | 22.0 | 12.3 | 29.1 | 36.6 |
Susurluk | 27.0 | 8.7 | 24.7 | 39.6 |
North Aegean | 24.1 | 4.6 | 24.9 | 46.5 |
Gediz | 26.8 | 5.8 | 21.7 | 45.7 |
Little Meander | 23.2 | 2.4 | 22.2 | 52.2 |
Big Meander | 26.2 | 6.8 | 21.1 | 45.9 |
West Mediterranean | 20.4 | 3.3 | 21.5 | 54.9 |
Antalya | 23.0 | 4.4 | 21.4 | 51.2 |
Burdur | 30.4 | 11.3 | 20.9 | 37.4 |
Akarçay | 32.8 | 13.8 | 21.2 | 32.2 |
Sakarya | 30.4 | 15.5 | 22.0 | 32.1 |
West Black Sea | 23.4 | 19.3 | 28.2 | 29.1 |
Yeşilırmak | 33.2 | 15.6 | 24.9 | 26.4 |
Kızılırmak | 34.6 | 15.8 | 21.6 | 28.0 |
Konya | 33.2 | 10.0 | 21.8 | 35.1 |
East Mediterranean | 23.0 | 3.8 | 22.2 | 50.9 |
Seyhan | 32.5 | 8.4 | 20.8 | 38.2 |
Asi | 28.1 | 4.1 | 23.4 | 44.4 |
Ceyhan | 32.1 | 5.3 | 20.9 | 41.7 |
Euphrates-Tigris | 36.2 | 4.8 | 21.0 | 38.0 |
East Black Sea | 22.9 | 20.6 | 31.2 | 25.4 |
Çoruh | 29.8 | 23.0 | 24.7 | 22.6 |
Aras | 34.2 | 28.4 | 21.3 | 16.2 |
Van | 39.0 | 9.2 | 24.1 | 27.6 |
Turkey (total) | 30.1 | 10.7 | 23.1 | 36.1 |
OK-Türkiye (total) | 29.8 | 10.7 | 23.3 | 36.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksu, H.H. Estimation and Analysis of Seasonal Rainfall Distribution and Potential of Türkiye and Its 25 Main Watersheds. Atmosphere 2023, 14, 800. https://doi.org/10.3390/atmos14050800
Aksu HH. Estimation and Analysis of Seasonal Rainfall Distribution and Potential of Türkiye and Its 25 Main Watersheds. Atmosphere. 2023; 14(5):800. https://doi.org/10.3390/atmos14050800
Chicago/Turabian StyleAksu, Hasan Hüseyin. 2023. "Estimation and Analysis of Seasonal Rainfall Distribution and Potential of Türkiye and Its 25 Main Watersheds" Atmosphere 14, no. 5: 800. https://doi.org/10.3390/atmos14050800
APA StyleAksu, H. H. (2023). Estimation and Analysis of Seasonal Rainfall Distribution and Potential of Türkiye and Its 25 Main Watersheds. Atmosphere, 14(5), 800. https://doi.org/10.3390/atmos14050800