Extratropical Cyclone Response to Projected Reductions in Snow Extent over the Great Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data
2.2. WRF Model Configuration
2.3. Analytical Methods
3. Results
3.1. Snow Cover Trends
3.2. Cyclone Trajectory
3.3. Cyclone Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leathers, D.J.; Ellis, A.W.; Robinson, D.A. Characteristics of temperature depressions associated with snow cover across the Northeast United States. J. App. Meteorol. Climatol. 1995, 34, 381–390. [Google Scholar] [CrossRef]
- Vavrus, S. The role of terrestrial snow cover in the climate system. Clim. Dyn. 2007, 29, 73–88. [Google Scholar] [CrossRef]
- Baker, D.G.; Ruschy, D.L.; Skaggs, R.H.; Wall, D.B. Air temperature and radiation depressions associated with a snow cover. J. Appl. Meteorol. Climatol. 1992, 31, 247–254. [Google Scholar] [CrossRef]
- Grundstein, A.J.; Leathers, D.J. A spatial analysis of snow–surface energy exchanges over the northern Great Plains of the United States in relation to synoptic scale forcing mechanisms. Int. J. Climatol. 1999, 19, 489–511. [Google Scholar] [CrossRef]
- Bengtsson, L. Evaporation from a snow cover: Review and discussion of measurements. Hydrol. Res. 1980, 11, 221–234. [Google Scholar] [CrossRef]
- Breeden, M.L.; Clare, R.M.; Martin, J.E.; Desai, A.R. Diagnosing the influence of a receding snow boundary on simulated midlatitude cyclones using piecewise potential vorticity inversion. Mon. Weather Rev. 2020, 148, 4479–4495. [Google Scholar] [CrossRef]
- Ellis, A.W.; Leathers, D.J. Analysis of cold airmass temperature modification across the US Great Plains as a consequence of snow depth and albedo. J. App. Meteorol. Climatol. 1999, 38, 696–711. [Google Scholar] [CrossRef]
- Namias, J. Some Empirical Evidence for the Influence of Snow Cover on Temperature and Precipitation. Mon. Weather Rev. 1985, 113, 1542–1553. [Google Scholar] [CrossRef]
- Walland, D.J.; Simmonds, I. Modelled atmospheric response to changes in Northern Hemisphere snow cover. Clim. Dyn. 1997, 13, 25–34. [Google Scholar] [CrossRef]
- Elguindi, N.; Hanson, B.; Leathers, D. The effects of snow cover on midlatitude cyclones in the Great Plains. J. Hydromet. 2005, 6, 263–279. [Google Scholar] [CrossRef]
- Namias, J. Influences of abnormal heat sources and sinks on atmospheric behavior. In Proceedings of the International Symposium on Numerical Weather Prediction, Tokyo, Japan, 7–13 November 1960; pp. 615–627. [Google Scholar]
- Cohen, J.; Entekhabi, D. Eurasian snow cover variability and northern hemisphere climate predictability. Geophys. Res. Lett. 1999, 26, 345–348. [Google Scholar] [CrossRef]
- Gutlzer, D.S.; Preston, J.W. Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett. 1997, 24, 2207–2210. [Google Scholar] [CrossRef]
- Alexander, M.A.; Tomas, R.; Deser, C.; Lawrence, D.M. The Atmospheric Response to Projected Terrestrial Snow Changes in the Late 21st Century. J. Clim. 2010, 23, 6430–6437. [Google Scholar] [CrossRef]
- Notaro, M.; Zarrin, A. Sensitivity of the North American monsoon to antecedent Rocky Mountain snowpack. Geophys. Res. Lett. 2011, 38, L17403. [Google Scholar] [CrossRef]
- Jeong, J.; Linderholm, H.W.; Woo, S.; Folland, C.; Kim, B.; Kim, S.; Chen, D. Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Clim. 2013, 26, 1956–1972. [Google Scholar] [CrossRef]
- Thomas, J.A.; Berg, A.A.; Merryfield, W.J. Influence of snow and soil moisture initialization on sub-seasonal predictability and forecast skill in boreal spring. Clim. Dyn. 2016, 47, 49–65. [Google Scholar] [CrossRef]
- Lamb, H.H. Two-way relationship between the snow or ice limit and the 1,000-500 mb thickness in the overlying atmosphere. Q. J. R. Meteorol. Soc. 1955, 81, 172–189. [Google Scholar] [CrossRef]
- Dickson, R.R.; Namias, J. North American Influences on the Circulation and Climate of the North Atlantic Sector. Mon. Weather Rev. 1976, 104, 1255–1265. [Google Scholar] [CrossRef]
- Heim, R.; Dewey, K.F. Circulation patterns and temperature fields associated with extensive snow cover on the North American continent. Phys. Geogr. 1984, 5, 66–85. [Google Scholar] [CrossRef]
- Rydzik, M.; Desai, A.R. Relationship between snow extent and midlatitude disturbance centers. J. Clim. 2014, 27, 2971–2982. [Google Scholar] [CrossRef]
- Carleton, A.M. Synoptic cryosphere—Atmosphere interactions in the Northern Hemisphere from DMSP image analysis. Int. J. Remote Sens. 1983, 6, 239–261. [Google Scholar] [CrossRef]
- Ross, B.; Walsh, J.E. Synoptic-scale influences of snow cover and sea ice. Mon. Weather Rev. 1986, 114, 1795–1810. [Google Scholar] [CrossRef]
- Brown, R.D. Northern Hemisphere snow cover variability and change, 1915-97. J. Clim. 2000, 13, 2339–2354. [Google Scholar] [CrossRef]
- Peacock, S. Projected Twent-First-Center Changes in Temperature, Precipitation, and Snow Cover over North America in CCSM4. J. Clim. 2012, 25, 4405–4429. [Google Scholar] [CrossRef]
- Notaro, M.; Lorenz, D.; Hoving, C.; Schummer, M. Twenty-first-century projections of snowfall and winter severity across Central-Eastern North America. J. Clim. 2014, 27, 6526–6550. [Google Scholar] [CrossRef]
- Kapnick, S.B.; Delworth, T.L. Controls of Global Snow under a Changed Climate. J. Clim. 2013, 26, 5537–5562. [Google Scholar] [CrossRef]
- Krasting, J.P.; Broccoli, A.J.; Dixon, K.W.; Lanzante, J.R. Future changes in Northern Hemisphere snowfall. J. Clim. 2013, 26, 7813–7828. [Google Scholar] [CrossRef]
- Harding, K.J.; Snyder, P.K.; Liess, S. Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models. J. Geophys. Res. 2013, 118, 12522–12536. [Google Scholar] [CrossRef]
- Maloney, E.D.; Camargo, S.J.; Chang, E.; Colle, B.; Fu, R.; Geil, K.; Hu, Q.; Jiang, X.; Johnson, N.C.; Karnauskas, K.B.; et al. North American Climate in CMIP5 experiments: Part III: Assesment of twenty-first-century projections. J. Clim. 2014, 27, 2230–2270. [Google Scholar] [CrossRef]
- Catto, J.L.; Ackerley, D.; Booth, J.F.; Champion, A.J.; Colle, B.A.; Pfahl, S.; Pinto, J.G.; Quinting, J.F.; Seiler, C. The future of midlatitude cyclones. Curr. Clim. Chang. Rep. 2019, 5, 407–420. [Google Scholar] [CrossRef]
- Robinson, D.A.; Kukla, G. Maximum surface albedo of seasonally snow-covered lands in the northern hemisphere. J. App. Met. Clim. 1985, 24, 402–411. [Google Scholar] [CrossRef]
- Jin, Y.; Schaaf, C.; Gao, F.; Li, X.; Strahler, A.; Zeng, X.; Dickinson, R. How does snow impact the albedo of vegetated land surfaces as analyzed with MODIS data? Geophys. Res. Lett. 2002, 29, 12-1–12-4. [Google Scholar] [CrossRef]
- Robinson, D.A.; Hughes, M.G. Snow cover variability on the northern and central Great Plains. Great Plains Res. 1991, 1, 93–113. [Google Scholar]
- Robinson, D.A. Evaluating snow cover over Northern Hemisphere lands using satellite and in situ observations. In Proceedings of the 53rd Eastern Snow Conference, Williamsburg, VA, USA, 13–19 May 1996. [Google Scholar]
- Reitan, C.H. Frequencies of cyclones and cyclogenesis for North America, 1951–1970. Mon. Weather Rev. 1974, 102, 861–868. [Google Scholar] [CrossRef]
- Zishka, K.M.; Smith, P.J. The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–1977. Mon. Weather Rev. 1980, 108, 387–401. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. New Perspectives on the Northern Hemisphere Winter Storm Tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Thomas, B.C.; Martin, J.E. A synoptic climatology and composite analysis of the Alberta Clipper. Weather Forecast. 2007, 22, 315–333. [Google Scholar] [CrossRef]
- Hawcroft, M.K.; Shaffrey, L.C.; Hodges, K.I.; Dacre, H.F. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 2012, 39, 809–814. [Google Scholar] [CrossRef]
- Trenberth, K.E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Clim. Chang. 1998, 39, 667–694. [Google Scholar] [CrossRef]
- Bagley, J.E.; Desai, A.R.; Dirmeyer, P.; Foley, J.A. Effects of land cover change on precipitation and crop yield in the world’s breadbaskets. Environ. Res. Lett. 2012, 7, 014009. [Google Scholar] [CrossRef]
- Shaw, T.A.; Graham, R.J. Hydrological cycle changes explain weak Snowball Earth storm track despite increased surface baroclinicity. Geophys. Res. Lett. 2020, 47, e2020GL089866. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; No. NCAR/TN-556+STR; NCAR: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thompson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Rhoades, A.M.; Ullrich, P.A.; Zarzycki, C.M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 2018, 50, 261–288. [Google Scholar] [CrossRef]
- Wang, J.; Kotamarthi, V.R. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States. J. Geophys. Res. Atmos. 2014, 119, 8778–8797. [Google Scholar] [CrossRef]
- Mearns, L.O.; Arritt, R.; Biner, S.; Bukovsky, M.S.; McGinnis, S.; Sain, S.; Caya, D.; Correia, J.; Flory, D.; Gutowski, W.; et al. The North American Regional Climate Change Assessment Program: Overview of Phase 1 Results. Bull. Am. Meteorol. Soc. 2012, 93, 1337–1362. [Google Scholar] [CrossRef]
- Hu, X.-M.; Xue, M.; McPherson, R.A.; Martin, E.; Rosendahl, D.H.; Qiao, L. Precipitation dynamical downscaling over the Great Plains. J. Adv. Model. Earth Syst. 2018, 10, 421–447. [Google Scholar] [CrossRef]
- Mitchell, K.; Ek, M.; Wong, V.; Lohmann, D.; Koren, V.; Schaake, J.; Duan, Q.; Gayno, G.; Moore, B.; Grunmann, P.; et al. The Community Noah Land Surface Model (LSM) User’s Guide Public Release Version 2.7.1; NCAR: Boulder, CO, USA, 2005. [Google Scholar]
- Livneh, B.; Xia, Y.; Mitchell, K.E.; Ek, M.B.; Lettenmaier, D.P. Noah LSM snow model diagnostics and enhancements. J. Hydrometeorol. 2010, 11, 721–738. [Google Scholar] [CrossRef]
- Hawcroft, M.; Walsh, E.; Hodges, K.; Zappa, G. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett. 2018, 13, 124006. [Google Scholar] [CrossRef]
- Powell, M.D.; Reinhold, T.A. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 2007, 88, 513–526. [Google Scholar] [CrossRef]
- Lombardo, K.; Colle, B.A.; Zhang, Z. Evaluation of Historical and Future Cool Season Precipitation over the Eastern United States and Western Atlantic Storm Track Using CMIP5 Models. J. Clim. 2015, 28, 451–467. [Google Scholar] [CrossRef]
- Yettella, V.; Kay, J.E. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Clim. Dyn. 2017, 49, 1765–1781. [Google Scholar] [CrossRef]
- Notaro, M.; Holman, K.; Zarrin, A.; Fluck, E.; Vavrus, S.; Bennington, V. Influence of the Laurentian Great Lakes on Regional Climate. J. Clim. 2013, 26, 789–804. [Google Scholar] [CrossRef]
- Ulbrich, U.; Leckebusch, G.C.; Pinto, J.G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 2009, 96, 117–131. [Google Scholar] [CrossRef]
- Zappa, G.; Shaffrey, L.C.; Hodges, K.I.; Sansom, P.G.; Stephenson, D.B. A Multimodel Assessment of Future Projections of North Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models. J. Clim. 2013, 26, 5846–5862. [Google Scholar] [CrossRef]
- Zhang, Z.; Colle, B.A. Changes in Extratropical Cyclone Precipitation and Associated Processes during the Twenty-First Century over Eastern North America and the Western Atlantic Using a Cyclone-Relative Approach. J. Clim. 2017, 30, 8633–8656. [Google Scholar] [CrossRef]
- Zhang, Z.; Colle, B.A. Impact of Dynamically Downscaling Two CMIP5 Models on the Historical and Future Changes in Winter Extratropical Cyclones along the East Coast of North America. J. Clim. 2018, 31, 8499–8525. [Google Scholar] [CrossRef]
- Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, X. Evaluation of Snow Albedo in Land Models for Weather and Climate Studies. J. Appl. Meteorol. Climatol. 2010, 49, 363–380. [Google Scholar] [CrossRef]
- Liu, L.; Menenti, M.; Ma, Y.; Ma, W. Improved Parameterization of Snow Albedo in WRF + Noah: Methodology Based on a Severe Snow Event on the Tibetan Plateau. Adv. Atmos. Sci. 2022, 39, 1079–1102. [Google Scholar] [CrossRef]
- Diro, G.T.; Sushama, L. Snow–precipitation coupling and related atmospheric feedbacks over North America. Atmos. Sci. Lett. 2018, 19, e831. [Google Scholar] [CrossRef]
- Diro, G.T.; Sushama, L. Contribution of snow cover decline to projected warming over North America. Geophys. Res. Lett. 2020, 47, e2019GL084414. [Google Scholar] [CrossRef]
- Clare, R.M.; Desai, A.R.; Notaro, M.; Martin, J.E.; Vavrus, S.J. Projected Snow Cover Reductions and Mid-latitude Cyclone Responses in the North American Great Plains, 1986–2005 ver 3. Environ. Data Initiat. 2020. [Google Scholar] [CrossRef]
Season | Case Number | Date of Cyclone Entering Domain | Clipper Storm? |
---|---|---|---|
Early | 1 | 15 November 1986 | Yes |
2 | 7 December 1989 | No | |
3 | 17 December 1998 | No | |
4 | 11 December 2004 | Yes | |
5 | 8 November 2005 | No | |
Mid | 6 | 7 February 1987 | Yes |
7 | 10 January 1990 | Yes | |
8 | 18 February 1994 | Yes | |
9 | 25 January 1996 | ||
10 | 15 February 2000 | ||
Late | 11 | 6 March 1987 | Yes |
12 | 22 March 1994 | ||
13 | 21 February 2001 | Yes | |
14 | 12 March 2002 | Yes | |
15 | 6 March 2005 | Yes |
Modeling Center (or Group) | Institute ID | Model Name | Horizonal Res. (°lon × °lat) | No. Vertical Levels |
---|---|---|---|---|
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia | CSIRO-BOM | ACCESS1.0 | 1.875 × 1.25 | 38 |
National Center for Atmospheric Research | NCAR | CCSM4 | 1.25 × 1.0 | 26 |
Centre National de Recherches Météorologique/Centre Européen de Recherche et Formation Avancée en Calcul Scientific | CNRM-CERFACS | CNRM-CM5 | 1.4 × 1.4 | 31 |
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence | CSIRO-QCCCE | CSIRO-Mk3.6.0 | 1.8 × 1.8 | 18 |
NASA Goddard Institute for Space Studies | NASA GISS | GISS-E2-H, GISS-E2-R | 2.5 × 2.0 | 40 |
Met Office Hadley Centre | MOHC | HadGEM2-CC, HadGEM2-ES | 1.8 × 1.25 | 60 |
Institute for Numerical Mathematics | INM | INM-CM4 | 2.0 × 1.5 | 21 |
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | MIROC | MIROC5 | 1.4 × 1.4 | 40 |
Max Planck Institute for Meteorology | MPI-M | MPI-ESM-LR | 1.9 × 1.9 | 47 |
Meteorological Research Institute | MRI | MRI-CGCM3 | 1.1 × 1.1 | 48 |
Norwegian Climate Centre | NCC | NorESM1-M, NorESM1-ME | 2.5 × 1.9 | 26 |
Month | P10 | P50 | P90 |
---|---|---|---|
Nov | GISS-E2-R, RCP4.5 | CNRM-CM5, RCP4.5 | ACCESS1.0, RCP8.5 |
Dec | INM-CM4, RCP4.5 | HadGEM2-ES, RCP4.5 | CSIRO-Mk3.6.0, RCP8.5 |
Jan | GISS-E2-R, RCP4.5 | MIROC5, RCP4.5 | MIROC5, RCP8.5 |
Feb | MRI-CGCM3, RCP8.5 | ACCESS1.0, RCP4.5 | ACCESS1.0, RCP8.5 |
Mar | MRI-CGCM3, RCP8.5 | CNRM-CM5, RCP8.5 | MIROC5, RCP8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clare, R.M.; Desai, A.R.; Martin, J.E.; Notaro, M.; Vavrus, S.J. Extratropical Cyclone Response to Projected Reductions in Snow Extent over the Great Plains. Atmosphere 2023, 14, 783. https://doi.org/10.3390/atmos14050783
Clare RM, Desai AR, Martin JE, Notaro M, Vavrus SJ. Extratropical Cyclone Response to Projected Reductions in Snow Extent over the Great Plains. Atmosphere. 2023; 14(5):783. https://doi.org/10.3390/atmos14050783
Chicago/Turabian StyleClare, Ryan M., Ankur R. Desai, Jonathan E. Martin, Michael Notaro, and Stephen J. Vavrus. 2023. "Extratropical Cyclone Response to Projected Reductions in Snow Extent over the Great Plains" Atmosphere 14, no. 5: 783. https://doi.org/10.3390/atmos14050783
APA StyleClare, R. M., Desai, A. R., Martin, J. E., Notaro, M., & Vavrus, S. J. (2023). Extratropical Cyclone Response to Projected Reductions in Snow Extent over the Great Plains. Atmosphere, 14(5), 783. https://doi.org/10.3390/atmos14050783