Black Carbon Emissions, Transport and Effect on Radiation Forcing Modelling during the Summer 2019–2020 Wildfires in Southeast Australia
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Ground Concentration and Spatial Pattern of BC during the Wildfires
3.2. Vertical Distribution and Transport of BC
3.3. Radiative Forcing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix B.1. Surface Meteorological Prediction and Observation at Bringelly and Newcastle
Appendix B.2. Top of the Atmosphere (TOA) Shortwave Radiation with Wildfire Simulation
Appendix B.3. Difference in Surface SW Radiation with No Wildfires and Wildfires Simulation
Appendix C
- (1)
- RRTMG variables (in W.m−2)
- (2)
- Other WRF–Chem variables
References
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef] [Green Version]
- Pani, S.K.; Lin, N.-H.; Griffith, S.M.; Chantara, S.; Lee, C.-T.; Thepnuan, D.; Tsai, Y.I. Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia. Environ. Pollut. 2021, 276, 116735. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J.J. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality. Atmos. Chem. Phys. 2011, 11, 7253–7267. [Google Scholar] [CrossRef] [Green Version]
- Samset, B.H.; Myhre, G.; Forster, P.M.; Hodnebrog, Ø.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kharin, V.; Kirkevåg, A.; et al. Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett. 2016, 43, 2782–2791. [Google Scholar] [CrossRef] [Green Version]
- Stjern, C.W.; Samset, B.H.; Myhre, G.; Forster, P.M.; Hodnebrog, Ø.; Andrews, T.; Boucher, O.; Faluvegi, G.; Iversen, T.; Kasoar, M.; et al. Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations. J. Geophys. Res. Atmos. 2017, 122, 11462–11481. [Google Scholar] [CrossRef] [PubMed]
- Takemura, T.; Suzuki, K. Weak global warming mitigation by reducing black carbon emissions. Sci. Rep. 2019, 9, 4419. [Google Scholar] [CrossRef] [Green Version]
- Lou, S.; Yang, Y.; Wang, H.; Lu, J.; Smith, S.; Liu, F.; Rasch, P.J. Black Carbon Increases Frequency of Extreme ENSO Events. J. Clim. 2019, 32, 8323–8333. [Google Scholar] [CrossRef]
- Archer-Nicholls, S.; Lowe, D.; Schultz, D.M.; McFiggans, G. Aerosol–radiation–cloud interactions in a regional coupled model: The effects of convective parameterisation and resolution. Atmos. Meas. Tech. 2016, 16, 5573–5594. [Google Scholar] [CrossRef] [Green Version]
- Forkel, R.; Werhahn, J.; Hansen, A.B.; McKeen, S.; Peckham, S.; Grell, G.; Suppan, P. Effect of aerosol-radiation feedback on regional air quality—A case study with WRF/Chem. Atmos. Environ. 2012, 53, 202–211. [Google Scholar] [CrossRef]
- Zhao, S.; Suzuki, K. Differing Impacts of Black Carbon and Sulfate Aerosols on Global Precipitation and the ITCZ Location via Atmosphere and Ocean Energy Perturbations. J. Clim. 2019, 32, 5567–5582. [Google Scholar] [CrossRef]
- Duc, H.N.; Shingles, K.; White, S.; Salter, D.; Chang, L.T.-C.; Gunashanhar, G.; Riley, M.; Trieu, T.; Dutt, U.; Azzi, M.; et al. Spatial-Temporal Pattern of Black Carbon (BC) Emission from Biomass Burning and Anthropogenic Sources in New South Wales and the Greater Metropolitan Region of Sydney, Australia. Atmosphere 2020, 11, 570. [Google Scholar] [CrossRef]
- Grell, G.; Baklanov, A. Integrated modelling for forecasting weather and air quality: A call for fully coupled approaches. Atmos. Environ. 2011, 45, 6845–6851. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Schwartz, C.S.; Lin, H.-C.; Cetola, J.D.; Gu, Y.; Xue, L. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States. Geosci. Model Dev. 2014, 7, 2709–2715. [Google Scholar] [CrossRef] [Green Version]
- Chaibou, A.A.S.; Ma, X.; Sha, T. Dust radiative forcing and its impact on surface energy budget over West Africa. Sci. Rep. 2020, 10, 12236. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sarawade, P.; Adhikary, B. Transport of black carbon from planetary boundary layer to free troposphere during the summer monsoon over South Asia. Atmos. Res. 2019, 235, 104761. [Google Scholar] [CrossRef]
- Singh, P.; Sarawade, P.; Adhikary, B. Carbonaceous Aerosol from Open Burning and its Impact on Regional Weather in South Asia. Aerosol Air Qual. Res. 2020, 20, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Leung, L.R.; Easter, R.C.; Hand, J.; Avise, J. Characterization of speciated aerosol direct radiative forcing over California. J. Geophys. Res. Atmos. 2013, 118, 2372–2388. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, Z.; Qian, Y.; Leung, L.R.; Huang, J.; Huang, M.; Jin, J.; Flanner, M.G.; Zhang, R.; Wang, H.; et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys. 2014, 14, 11475–11491. [Google Scholar] [CrossRef] [Green Version]
- Aragnou, E.; Watt, S.; Duc, H.; Cheeseman, C.; Riley, M.; Leys, J.; White, S.; Salter, D.; Azzi, M.; Chang, L.; et al. Dust Transport from Inland Australia and Its Impact on Air Quality and Health on the Eastern Coast of Australia during the February 2019 Dust Storm. Atmosphere 2021, 12, 141. [Google Scholar] [CrossRef]
- Nguyen, H.; Azzi, M.; White, S.; Salter, D.; Trieu, T.; Morgan, G.; Rahman, M.; Watt, S.; Riley, M.; Chang, L.; et al. The Summer 2019–2020 Wildfires in East Coast Australia and Their Impacts on Air Quality and Health in New South Wales, Australia. Int. J. Environ. Res. Public Health 2021, 18, 3538. [Google Scholar] [CrossRef]
- Sandradewi, J.; Prévôt, A.S.H.; Szidat, S.; Perron, N.; Alfarra, M.R.; Lanz, V.A.; Weingartner, E.; Baltensperger, U. Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter. Environ. Sci. Technol. 2008, 42, 3316–3323. [Google Scholar] [CrossRef] [PubMed]
- Tobler, A.K.; Skiba, A.; Canonaco, F.; Močnik, G.; Rai, P.; Chen, G.; Bartyzel, J.; Zimnoch, M.; Styszko, K.; Nęcki, J.; et al. Characterization of non-refractory (NR) PM1 and source apportionment of organic aerosol in Kraków, Poland. Atmos. Chem. Phys. 2021, 21, 14893–14906. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Easter, R.C.; Fast, J.D.; Peters, L.K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res. Atmos. 2008, 113, D13204. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Tao, S.; Ban-Weiss, G.A. Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale. Atmos. Chem. Phys. 2015, 15, 11521–11535. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Zhao, C.; Liu, X.; Lin, N.-H.; Chen, W.-N. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B Chem. Phys. Meteorol. 2014, 66, 23733. [Google Scholar] [CrossRef] [Green Version]
- Archer-Nicholls, S. Evaluated Developments in the WRF-Chem Model: Comparison with Observations and Evaluation of Impacts. Ph.D. Thesis, School of Earth Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK, 2014. Available online: https://www.research.manchester.ac.uk/portal/files/54558550/FULL_TEXT.PDF (accessed on 16 April 2021).
- Papanikolaou, C.-A.; Kokkalis, P.; Soupiona, O.; Solomos, S.; Papayannis, A.; Mylonaki, M.; Anagnou, D.; Foskinis, R.; Gidarakou, M. Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. Atmosphere 2022, 13, 867. [Google Scholar] [CrossRef]
- Duc, H.N.; Rahman, M.; Trieu, T.; Azzi, M.; Riley, M.; Koh, T.; Liu, S.; Bandara, K.; Krishnan, V.; Yang, Y.; et al. Study of Planetary Boundary Layer, Air Pollution, Air Quality Models and Aerosol Transport Using Ceilometers in New South Wales (NSW), Australia. Atmosphere 2022, 13, 176. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Zhu, S.; Gantt, B. Sensitivity of simulated chemical concentrations and aerosol-meteorology interactions to aerosol treatments and biogenic organic emissions in WRF/Chem. J. Geophys. Res. Atmos. 2016, 121, 6014–6048. [Google Scholar] [CrossRef]
- Curci, G.; Ferrero, L.; Tuccella, P.; Barnaba, F.; Angelini, F.; Bolzacchini, E.; Carbone, C.; van der Gon, H.A.C.D.; Facchini, M.C.; Gobbi, G.P.; et al. How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate. Atmos. Chem. Phys. 2015, 15, 2629–2649. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Hu, F.; Xiao, Z.; Fan, G.; Zhang, Z. Comparison of four different types of planetary boundary layer heights during a haze episode in Beijing. Sci. Total Environ. 2019, 711, 134928. [Google Scholar] [CrossRef]
- Robinson, D.L. Accurate, Low Cost PM2.5 Measurements Demonstrate the Large Spatial Variation in Wood Smoke Pollution in Regional Australia and Improve Modeling and Estimates of Health Costs. Atmosphere 2020, 11, 856. [Google Scholar] [CrossRef]
- Fierce, L.; Onasch, T.B.; Cappa, C.D.; Mazzoleni, C.; China, S.; Bhandari, J.; Davidovits, P.; Al Fischer, D.; Helgestad, T.; Lambe, A.T.; et al. Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proc. Natl. Acad. Sci. USA 2020, 117, 5196–5203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Whitehead, J.; Alfarra, M.R.; Reyes-Villegas, E.; Spracklen, D.V.; Reddington, C.L.; Kong, S.; Williams, P.I.; Ting, Y.-C.; Haslett, S.; et al. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat. Geosci. 2017, 10, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ma, P.; Peng, J.; Zhang, R.; Jiang, J.H.; Easter, R.C.; Yung, Y.L. Constraining Aging Processes of Black Carbon in the Community Atmosphere Model Using Environmental Chamber Measurements. J. Adv. Model. Earth Syst. 2018, 10, 2514–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desservettaz, M.J.; Fisher, J.A.; Luhar, A.K.; Woodhouse, M.T.; Bukosa, B.; Buchholz, R.R.; Wiedinmyer, C.; Griffith, D.W.T.; Krummel, P.B.; Jones, N.B.; et al. Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints. J. Geophys. Res. Atmos. 2022, 127, e2021JD035925. [Google Scholar] [CrossRef]
Physical Parametrisation | Namelist Variable | Option | Model/Scheme |
---|---|---|---|
Microphysics | mp_physics | 10 | Double-moment Morrison (modelling indirect effect on radiation due to aerosol cloud interaction) |
Land surface | sf_surface_physics | 2 | Noah land surface model |
Surface layer physics | sf_sfclay_physics | 1 | Monin–Obukhov similarity |
Planetary Boundary Layer | bl_pbl_physics | 1 | YSU scheme |
Shortwave radiation | ra_sw_physics | 4 | Rapid radiative transfer model (RRTMG) |
Long wave radiation | ra_lw_physics | 4 | Rapid radiative transfer model (RRTMG) |
Aerosol chemistry | chem_opt | 202 | MOZART-4 chemistry and aerosol MOSAIC with aqueous chemistry |
Dust scheme | dust_opt | 3 | GOCART–AFWA scheme |
Aerosol extinction coefficient approximation | aer_opt_opt | 2 | Maxwell–Garnett approximation |
Aerosol radiative feedback | aer_ra_feedback | 1 | Turn on aerosol radiative feedback with RRTMG model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc, H.N.; Azzi, M.; Zhang, Y.; Kirkwood, J.; White, S.; Trieu, T.; Riley, M.; Salter, D.; Chang, L.T.-C.; Capnerhurst, J.; et al. Black Carbon Emissions, Transport and Effect on Radiation Forcing Modelling during the Summer 2019–2020 Wildfires in Southeast Australia. Atmosphere 2023, 14, 699. https://doi.org/10.3390/atmos14040699
Duc HN, Azzi M, Zhang Y, Kirkwood J, White S, Trieu T, Riley M, Salter D, Chang LT-C, Capnerhurst J, et al. Black Carbon Emissions, Transport and Effect on Radiation Forcing Modelling during the Summer 2019–2020 Wildfires in Southeast Australia. Atmosphere. 2023; 14(4):699. https://doi.org/10.3390/atmos14040699
Chicago/Turabian StyleDuc, Hiep Nguyen, Merched Azzi, Yang Zhang, John Kirkwood, Stephen White, Toan Trieu, Matthew Riley, David Salter, Lisa Tzu-Chi Chang, Jordan Capnerhurst, and et al. 2023. "Black Carbon Emissions, Transport and Effect on Radiation Forcing Modelling during the Summer 2019–2020 Wildfires in Southeast Australia" Atmosphere 14, no. 4: 699. https://doi.org/10.3390/atmos14040699
APA StyleDuc, H. N., Azzi, M., Zhang, Y., Kirkwood, J., White, S., Trieu, T., Riley, M., Salter, D., Chang, L. T. -C., Capnerhurst, J., Ho, J., Gunashanhar, G., & Monk, K. (2023). Black Carbon Emissions, Transport and Effect on Radiation Forcing Modelling during the Summer 2019–2020 Wildfires in Southeast Australia. Atmosphere, 14(4), 699. https://doi.org/10.3390/atmos14040699