Metal Composition and Source Identification of PM2.5 and PM10 at a Suburban Site in Pathum Thani, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sampling Procedure and Instrumentation
2.3. Elemental Analysis
2.4. Source Identification Methods
3. Results and Discussion
3.1. PM2.5 and PM10 Mass Concentrations and Meteorology
3.2. Elemental Concentration
3.3. Source Identification
3.3.1. Correlation Analysis
3.3.2. PCA Analysis
3.3.3. CA Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diapouli, E.; Fetfatzis, P.; Panteliadis, P.; Spitieri, C.; Gini, M.I.; Papagiannis, S.; Vasilatou, V.; Eleftheriadis, K. PM2.5 source apportionment and implications for particle hygroscopicity at an urban background site in Athens, Greece. Atmosphere 2022, 13, 1685. [Google Scholar] [CrossRef]
- Zhang, G.; Ding, C.; Jiang, K.; Pan, G.; Wei, X.; Sun, Y. Chemical compositions and sources contribution of atmospheric particles at a typical steel industrial urban site. Sci. Rep. 2020, 10, 7654. [Google Scholar] [CrossRef] [PubMed]
- Waheed, S.; Jaafar, M.Z.; Siddique, N.; Markwitz, A.; Brereton, R.G. PIXE analysis of PM2.5 and PM2.5–10 for air quality assessment of Islamabad, Pakistan: Application of chemometrics for source identification. J. Environ. Sci. Health Part A 2012, 47, 2016–2027. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Qiu, T.; Du, S.; Gu, Y.; Li, A.; Hua, X.; Ning, Y.; Liang, D. The chemical characterization and source apportionment of PM2.5 and PM10 in a typical city of Northeast China. Urban Clim. 2023, 47, 101373. [Google Scholar] [CrossRef]
- Usman, F.; Zeb, B.; Alam, K.; Valipour, M.; Ditta, A.; Sorooshian, A.; Roy, R.; Ahmad, I.; Iqbal, R. Exploring the mass concentration of particulate matter and its relationship with meteorological parameters in the Hindu-Kush Range. Atmosphere 2022, 13, 1628. [Google Scholar] [CrossRef]
- Ramírez, O.; Campa, A.M.S.; Amato, F.; Ruth, A.; Catacolí, R.A.; Rojas, N.Y.; Rosa, J. Chemical composition and source apportionment of PM at an urban background site in a high-altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 2018, 233, 142–155. [Google Scholar] [CrossRef]
- Wang, S.; Yu, R.; Shen, H.; Wang, S.; Hu, Q.; Cui, J.; Yan, Y.; Huang, H.; Hu, G. Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China. Environ. Pollut. 2019, 251, 442–452. [Google Scholar] [CrossRef]
- Kanjanasiranont, N.; Butburee, T.; Peerakiatkhajohn, P. Characteristics of PM10 levels monitored in Bangkok and its vicinity areas, Thailand. Atmosphere 2022, 13, 239. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Srimanus, W.; Srimanus, R.; Kiangkoo, N.; Moonsri, K.; Niampradit, S.; Suwanmanee, S.; Tantrakarnapa, K. The association of meteorological parameters and AirQ+ health risk assessment of PM2.5 in Ratchaburi province, Thailand. Sci. Rep. 2022, 12, 12971. [Google Scholar] [CrossRef]
- Niampradit, S.; Kliengchuay, W.; Mingkhwan, R.; Worakhunpiset, S.; Kiangkoo, N.; Suntorn, S.; Hongthong, A.; Siriratruengsuk, W.; Muangsuwan, T.; Tantrakarnapa, K. The elemental characteristics and human health risk of PM2.5 during haze episode and non-haze episode in Chiang Rai Province, Thailand. Int. J. Environ. Res. Public Health 2022, 19, 6127. [Google Scholar] [CrossRef]
- Kayee, J.; Sompongchaiyakul, P.; Sanwlani, N.; Bureekul, S.; Wang, X.; Das, R. Metal concentrations and source apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a biomass burning season. ACS Earth Space Chem. 2020, 4, 1213–1226. [Google Scholar] [CrossRef]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Suttinun, O.; Deelaman, W.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; Palakun, J.; et al. Impacts of PM2.5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmos. Pollut. Res. 2020, 11, 1657–1667. [Google Scholar] [CrossRef]
- Ahmad, M.; Manjantrarat, T.; Rattanawongsa, W.; Muensri, P.; Saenmuangchin, R.; Klamchuen, A.; Aueviriyavit, S.; Sukrak, K.; Kangwansupamonkon, W.; Panyametheekul, S. Chemical composition, sources, and health risk assessment of PM2.5 and PM10 in urban sites of Bangkok, Thailand. Int. J. Environ. Res. Public Health 2022, 19, 14281. [Google Scholar] [CrossRef] [PubMed]
- Johnston, H.J.; Mueller, W.; Steinle, S.; Vardoulakis, S.; Tantrakarnapa, K.; Loh, M.; Cherrie, J.W. How harmful is particulate matter emitted from biomass burning? A Thailand perspective. Curr. Pollut. Rep. 2019, 5, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Vongruang, P.; Pimonsree, S. Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmos. Environ. 2020, 228, 117414. [Google Scholar] [CrossRef]
- Kawichai, S.; Prapamontol, T.; Cao, F.; Song, W.; Zhang, Y. Source identification of PM2.5 during a smoke haze period in Chiang Mai, Thailand, using stable carbon and nitrogen isotopes. Atmosphere 2022, 14, 1149. [Google Scholar] [CrossRef]
- Peng-in, B.; Sanitluea, P.; Monjatturat, P.; Boonkerd, P.; Phosri, A. Estimating ground-level PM2.5 over Bangkok Metropolitan Region in Thailand using aerosol optical depth retrieved by MODIS. Air Qual. Atmos. Health 2022, 15, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Wimolwattanapu, W.; Hopke, P.K.; Pongkiatkul, P. Source apportionment and potential source locations of PM2.5 and PM2.5–10 at residential sites in metropolitan Bangkok. Atmos. Pollut. Res. 2011, 2, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Rincon, G.; Quintana, G.M.; Gonzalez, A.; Buitrago, Y.; Gonzalez, J.C.; Molina, C.; Jones, B. PM2.5 exceedances and source appointment as inputs for an early warning system. Environ. Geochem. Health 2022, 44, 4569–4593. [Google Scholar] [CrossRef]
- Cohen, D.D.; Bailey, G.M.; Kondepudi, R. Elemental analysis by PIXE and other IBA techniques and their application to source fingerprinting of atmospheric fine particle pollution. Nucl. Instrum. Methods Phys. Res. Sect. B 1996, 109–110, 218–226. [Google Scholar] [CrossRef]
- De La Cruz, A.H.; Roca, Y.B.; Suarez-Salas, L.; Pomalaya, J.; Tolentino, D.A.; Gioda, A. Chemical characterization of PM2.5 at rural and urban sites around the Metropolitan area of Huancayo (Central Andes of Peru). Atmosphere 2019, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Kanchanasuta, S.; Sooktawee, S.; Patpai, A.; Vatanasomboon, P. Temporal Variations and Potential Source Areas of Fine Particulate Matter in Bangkok, Thailand. Air Soil Water Res. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Santoso, M.; Lestiani, D.D.; Kurniawati, S.; Damastuti, E.; Kusmartini, I.; Atmodjo, D.P.D.; Sari, D.K.; Hopke, P.K.; Mukhtar, R.; Muhtarom, T.; et al. Assessment of urban air quality in Indonesia. Aerosol Air Qual. Res. 2020, 20, 2142–2158. [Google Scholar] [CrossRef]
- Hassan, H.; Latif, M.T.; Juneng, L.; Amil, N.; Khan, M.F.; Fujii, Y.; Jamhari, A.A.; Hamid, H.H.A.; Banerjee, T. Chemical characterization and sources identification of PM2.5 in a tropical urban city during non-hazy conditions. Urban Clim. 2021, 39, 100953. [Google Scholar] [CrossRef]
- Siregar, S.; Idiawati, N.; Lestari, P.; Berekute, A.K.; Pan, W.; Yu, K. Chemical composition, source appointment and health risk of PM2.5 and PM2.5-10 during forest and peatland fires in Riau, Indonesia. Aerosol Air Qual. Res. 2022, 22, 220015. [Google Scholar] [CrossRef]
- Zalakeviciute, R.; Rybarczyk, Y.; Granda-Albuja, M.G.; Suarez, M.V.D.; Alexandrino, K. Chemical characterization of urban PM10 in the Tropical Andes. Atmos. Pollut. Res. 2020, 11, 343–356. [Google Scholar] [CrossRef]
- Gómez-Plata, L.; Agudelo-Castañeda, D.; Castill, M.; Teixeira, E.C. PM10 source identification: A case of a coastal city in Colombia. Aerosol Air Qual. Res. 2022, 22, 210293. [Google Scholar] [CrossRef]
- Lestiani, D.D.; Santoso, M. Analytical methods INAA and PIXE applied to characterization of airborne particulate matter in Bandung, Indonesia. At. Indones. 2011, 37, 52–56. [Google Scholar] [CrossRef]
- Zhang, T.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Xu, X. Continuous measurements, and source apportionment of ambient PM2.5-bound elements in Windsor, Canada. Atmosphere 2023, 14, 374. [Google Scholar] [CrossRef]
- Shaltout, A.A.; Boman, J.; Hassan, S.K.; Abozied, A.M.; Al-Ashkar, E.A.; Abd-Elkader, O.H.; Yassin, M.A.; Al-Tamimi, J.H. Elemental composition of PM2.5 aerosol in a residential–industrial area of a Mediterranean Megacity. Arch. Environ. Contam. Toxicol. 2020, 78, 68–78. [Google Scholar] [CrossRef]
- Panda, S.; Nagendra, S.M.S. Chemical and morphological characterization of respirable suspended particulate matter (PM10) and associated heath risk at a critically polluted industrial cluster. Atmos. Pollut. Res. 2018, 9, 791–803. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Levesque, C.; Rasmussen, P.E. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Sci. Total Environ. 2021, 786, 147467. [Google Scholar] [CrossRef] [PubMed]
- Samek, L.; Stegowski, Z.; Styszko, K.; Furman, L.; Zimnoch, M.; Skiba, A.; Kistler, M.; Kasper-Giebl, A.; Rozanski, K.; Konduracka, E. Seasonal variations of chemical composition of PM2.5 fraction in the urban area of Krakow, Poland: PMF source attribution. Air Qual. Atmos. Health 2020, 13, 89–96. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Balachandran, S. Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India. Ecotoxicol. Environ. Saf. 2018, 154, 280–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Li, X.; Cao, J. Refined source apportionment of atmospheric PM2.5 in a Typical City in Northwest China. Aerosol Air Qual. Res. 2021, 21, 200146. [Google Scholar] [CrossRef]
- Evagelopoulos, V.; Begou, P.; Zoras, S. In-depth study of PM2.5 and PM10 concentrations over a 12-year period and their elemental composition in the Lignite Center of Western Macedonia, Greece. Atmosphere 2022, 13, 1900. [Google Scholar] [CrossRef]
- Rahman, M.S.; Bhuiyan, S.S.; Ahmed, Z.; Saha, N.; Begum, B.A. Characterization and source apportionment of elemental species in PM2.5 with especial emphasis on seasonal variation in the capital city “Dhaka”, Bangladesh. Urban Clim. 2021, 36, 100804. [Google Scholar] [CrossRef]
- Saggu, G.S.; Mittal, S.K. Source apportionment of PM10 by positive matrix factorization model at a source region of biomass burning. J. Environ. Manag. 2020, 266, 110545. [Google Scholar] [CrossRef] [PubMed]
- Sillapapiromsuk, S.; Chantara, S.; Tengjaroenkul, U.; Prasitwattanaseree, S.; Prapamontol, T. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere 2013, 93, 1912–1919. [Google Scholar] [CrossRef]
- Popouen, A.J.; Benchrif, A.; Kezo, P.C.; Agbo, D.D.A.; Koua, A.A.; Bounakhla, M.; Monnehan, A.G. Elemental Composition of PM2.5 and PM10 in the Industrial Area of Yopougon, Abidjan, Côted’Ivoire. J. Environ. Prot. 2022, 13, 385–397. [Google Scholar] [CrossRef]
- Molnár, P.; Gustafson, P.; Johannesson, S.; Boman, J.; Barregård, L.; Sällstena, G. Domestic wood burning and PM2.5 trace elements: Personal exposures, indoor and outdoor levels. Atmos. Environ. 2005, 39, 2643–2653. [Google Scholar] [CrossRef]
- Xia, L.; Gao, Y. Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the U.S. east coast. Atmos. Pollut. Res. 2011, 2, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020, 713, 136729. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.Z.; Sun, L.; Tian, Y.; Shi, G.; Feng, Y. Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. J. Environ. Sci. 2021, 99, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Vaio, P.D.; Magli, E.; Barbato, F.; Caliendo, G.; Cocozziello, B.; Corvino, A.; Marco, A.D.; Fiorino, F.; Frecentese, F.; Onorati, G.; et al. Chemical composition of PM10 at urban sites in Naples (Italy). Atmosphere 2016, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Truong, M.T.; Nguyen, L.S.P.; Hien, T.T.; Pham, T.D.H.; Do, T.T.L. Source apportionment and risk estimation of heavy metals in PM10 at a Southern Vietnam megacity. Aerosol Air Qual. Res. 2022, 22, 220094. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, L.; Miao, W.; Zhang, J.; Dong, G.; Liu, K.; Chen, J.; Peng, T.; Fu, Y.; Ahou, Y.; et al. Characteristics of fine particulate matter (PM2.5) at Jinsha Site Museum, Chengdu, China. Environ. Sci. Pollut. Res. 2022, 29, 1173–1183. [Google Scholar] [CrossRef]
- Bangar, V.; Mishra, A.K.; Jangid, M.; Rajput, P. Elemental Characteristics and source-apportionment of PM2.5 during the post-monsoon season in Delhi, India. Front. Sustain. Cities 2021, 3, 648551. [Google Scholar] [CrossRef]
- Onat, B.; Sahin, U.A.; Akyuz, T. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos. Pollut. Res. 2013, 4, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Bie, S.; Yang, L.; Zhang, Y.; Huang, Q.; Li, J.; Zhao, T.; Zhang, X.; Wanga, P.; Wang, W. Source appointment of PM2.5 in Qingdao Port, East of China. Sci. Total Environ. 2021, 755, 142456. [Google Scholar] [CrossRef]
- Ahmad, M.; Rihawy, M.S.; Haydr, R.; Tlass, M.; Roumie, M.; Srour, A. PIXE and statistical analysis of fine airborne particulate matter (PM2.5) in Damascus. Nucl. Instrum. Methods Phys. Res. Sect. B 2020, 462, 75–81. [Google Scholar] [CrossRef]
- Li, J.; Chen, B.; Campa, A.M.; Alastuey, A.; Querol, X.; Rosa, J.D. 2005–2014 trends of PM10 source contributions in an industrialized area of southern Spain. Environ. Pollut. 2018, 236, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Bencharif-Madani, F.; Ali-Khodja, H.; Kemmouche, A.; Terrouche, A.; Lokorai, K.; Naidja, L.; Bouziane, M. Mass concentrations, seasonal variations, chemical compositions and element sources of PM10 at an urban site in Constantine, northeast Algeria. J. Geochem. Explor. 2019, 206, 106356. [Google Scholar] [CrossRef]
- Jaafari, J.; Naddafi, K.; Yunesian, M.; Nabizadeh, R.; Hassanvand, M.S.; Ghozikali, M.G.; Shamsollahi, H.R.; Nazmara, S.; Yaghmaeian, K. Characterization, risk assessment and potential source identification of PM10 in Tehran. Microchem. J. 2020, 154, 104533. [Google Scholar] [CrossRef]
- Millán-Martínez, M.; Sánchez-Rodas, D.; Campa, A.M.; Rosa, J.D. Contribution of anthropogenic and natural sources in PM10 during North African dust events in Southern Europe. Environ. Pollut. 2021, 290, 118065. [Google Scholar] [CrossRef] [PubMed]
Parameters | Data |
---|---|
Sampling site | 14.24° S, 100.43° E |
Sampling period | 18 February 2021–14 September 2021 |
Summer season (18 February 2021–15 May 2021) | |
Wet season (16 May 2021–14 September 2021) | |
Total number of samples collected | |
PM2.5 | 77 (31 for summer; 46 for wet period) |
PM10 | 49 (21 for summer; 28 for wet period) |
Average sampling time (h) | 24 |
Average flow rate (L min–1) | 16.67 |
Average volume (m–3) | 24 |
Analysis Equipment | Tandetron Tandem Accelerator at Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Thailand |
---|---|
Proton energy | 2 MeV |
Detector | Si(Li) |
Beam intensity | 2 nA |
Beam spot area | 1 mm2 |
Analysis time | 1000 s |
Analysis software | GUPIX |
Variable | Mean | Min | Max | SD |
---|---|---|---|---|
PM2.5 (μg/m3) | 48.10 | 0.39 | 174.26 | 46.97 |
PM10 (μg/m3) | 65.90 | 12.75 | 242.02 | 47.51 |
Rainfall (mm) | 4.15 | 0.00 | 74.80 | 11.32 |
Min Temperature (°C) | 25.88 | 20.50 | 29.00 | 1.24 |
Max Temperature (°C) | 35.70 | 30.50 | 39.50 | 2.10 |
Air pressure (mmHg) | 756.60 | 753.51 | 763.03 | 1.70 |
Relative humidity (%) | 88.96 | 70.00 | 98.00 | 8.17 |
Wind speed (m/s) | 0.35 | 0.00 | 2.50 | 0.52 |
Study Area | Location Type | Sampling Period | PM Size Fraction | Average Conc. (μg/m3) | References |
---|---|---|---|---|---|
Pathum Thani, Thailand | Suburban | Feb 2021–Sep 2021 | PM2.5 | 48 ± 47 | This study |
PM10 | 66 ± 48 | ||||
Bangkok, Thailand | Urban | Aug 2017–Mar 2018 | PM2.5 | 77 ± 21 | [12] |
Chiang Mai, Thailand | Urban | Jan 2017–Mar 2017 | PM2.5 | 36 ± 16 | [16] |
Chiang Rai, Thailand | Peri-urban | Jul 2021–Aug 2021 | PM2.5 | 63 ± 26 | [10] |
Pekanbaru, Indonesia | Urban | Apr 2014–Jul 2014 | PM2.5 | 63 ± 3 | [25] |
PM10 | 28 ± 2 | ||||
Jayapura, Indonesia | Suburban | Jan 2017–Dec 2017 | PM2.5 | 6 ± 3 | [23] |
PM10 | 12 ± 3 | ||||
Barranquilla, Colombia | Urban | Mar 2016–Apr 2016 | PM10 | 52 ± 11 | [27] |
Belisario Quito, Ecuador | Urban | Jan 2017–Oct 2017 | PM10 | 25 ± 9 | [26] |
Los Chillos, Ecuador | Industrial | 26 ± 11 | |||
Tababela, Ecuador | Peri-urban | 26 ± 5 | |||
Petaling Jaya, Malaysia | Suburban | Jan 2017–Feb 2018 | PM2.5 | 28 ± 10 | [24] |
Element | MDL | PM2.5 | PM10 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | Mean | Min | Max | SD | ||
Si | 0.31 | 17.90 | 1.08 | 72.67 | 17.50 | 15.18 | 1.67 | 57.71 | 12.94 |
S | 0.26 | 20.86 | 0.71 | 107.92 | 21.13 | 17.70 | 1.44 | 50.05 | 14.42 |
Cl | 0.24 | 6.63 | 0.48 | 30.25 | 6.26 | 15.44 | 1.20 | 86.20 | 17.27 |
K | 0.66 | 74.79 | 1.23 | 355.01 | 73.81 | 70.79 | 10.07 | 220.67 | 51.69 |
Ca | 1.17 | 30.71 | 1.51 | 137.64 | 28.78 | 139.13 | 29.18 | 485.94 | 90.23 |
Ti | 0.22 | 7.04 | 0.30 | 125.04 | 17.88 | 10.51 | 0.92 | 37.60 | 8.42 |
Cr | 0.57 | 65.43 | 1.44 | 948.16 | 163.74 | 113.59 | 0.75 | 1033.32 | 243.05 |
Mn | 0.39 | 15.34 | 0.54 | 125.81 | 24.00 | 14.12 | 1.33 | 124.40 | 24.34 |
Fe | 1.42 | 157.74 | 1.76 | 3879.18 | 491.03 | 291.82 | 22.42 | 4145.35 | 661.64 |
Zn | 1.78 | 21.17 | 2.30 | 76.82 | 19.79 | 24.72 | 2.95 | 82.08 | 18.75 |
Ni | 1.31 | 18.80 | 1.84 | 94.06 | 25.15 | 71.78 | 3.78 | 595.56 | 152.15 |
Cu | 1.22 | 7.77 | 1.69 | 35.08 | 5.95 | 10.24 | 2.31 | 53.34 | 10.74 |
Mass | Si | S | Cl | K | Ca | Ti | Cr | Mn | Fe | Zn | Ni | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass | 1 | ||||||||||||
Si | −0.203 | 1 | |||||||||||
S | −0.256 | 0.601 | 1 | ||||||||||
Cl | −0.257 | 0.578 | 0.511 | 1 | |||||||||
K | −0.230 | 0.547 | 0.741 | 0.614 | 1 | ||||||||
Ca | −0.252 | 0.632 | 0.577 | 0.556 | 0.629 | 1 | |||||||
Ti | −0.152 | 0.029 | 0.064 | 0.210 | 0.492 | 0.189 | 1 | ||||||
Cr | −0.157 | 0.037 | −0.009 | −0.146 | −0.720 | −0.018 | 0.301 | 1 | |||||
Mn | −0.207 | 0.033 | 0.063 | −0.059 | 0.039 | 0.073 | 0.444 | 0.967 | 1 | ||||
Fe | −0.140 | 0.123 | 0.088 | −0.042 | 0.003 | 0.024 | 0.041 | 0.990 | 0.949 | 1 | |||
Zn | −0.011 | −0.007 | 0.262 | 0.209 | 0.230 | 0.384 | −0.117 | −0.153 | −0.062 | −0.085 | 1 | ||
Ni | −0.081 | −0.239 | −0.117 | −0.286 | −0.112 | −0.008 | 0.725 | 0.966 | 0.947 | 0.968 | −0.117 | 1 | |
Cu | −0.025 | 0.094 | 0.212 | 0.175 | 0.194 | 0.202 | 0.094 | 0.099 | 0.597 | 0.133 | 0.524 | −0.021 | 1 |
Mass | Si | S | Cl | K | Ca | Ti | Cr | Mn | Fe | Zn | Ni | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass | 1 | ||||||||||||
Si | 0.071 | 1 | |||||||||||
S | −0.167 | 0.508 | 1 | ||||||||||
Cl | 0.012 | 0.480 | 0.252 | 1 | |||||||||
K | −0.107 | 0.393 | 0.737 | 0.259 | 1 | ||||||||
Ca | −0.065 | 0.625 | 0.685 | 0.386 | 0.804 | 1 | |||||||
Ti | −0.140 | 0.265 | 0.367 | 0.213 | 0.535 | 0.520 | 1 | ||||||
Cr | 0.151 | 0.354 | 0.187 | −0.022 | −0.182 | −0.149 | −0.181 | 1 | |||||
Mn | −0.080 | 0.297 | 0.189 | −0.031 | −0.024 | −0.031 | −0.168 | 0.971 | 1 | ||||
Fe | −0.059 | 0.367 | 0.261 | 0.015 | 0.021 | 0.030 | −0.052 | 0.993 | 0.970 | 1 | |||
Zn | 0.084 | −0.037 | 0.296 | 0.005 | 0.383 | 0.484 | 0.090 | −0.050 | 0.028 | −0.008 | 1 | ||
Ni | 0.041 | 0.696 | 0.371 | 0.021 | −0.146 | −0.209 | −0.206 | 0.969 | 0.914 | 0.984 | −0.306 | 1 | |
Cu | −0.167 | 0.279 | 0.176 | 0.121 | 0.077 | 0.441 | 0.274 | 0.746 | 0.125 | 0.145 | 0.204 | 0.049 | 1 |
Element | PM2.5 | PM10 | |||||
---|---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 1 | Factor 2 | Factor 3 | |
Si | 0.831 | 0.123 | −0.052 | 0.109 | 0.305 | 0.370 | −0.719 |
S | 0.843 | 0.081 | 0.14 | 0.047 | 0.219 | 0.790 | −0.222 |
Cl | 0.724 | −0.049 | 0.033 | −0.181 | −0.087 | 0.171 | −0.743 |
K | 0.794 | −0.006 | 0.181 | −0.413 | −0.040 | 0.914 | −0.098 |
Ca | 0.807 | 0.040 | 0.186 | −0.106 | −0.054 | 0.858 | −0.380 |
Ti | 0.172 | 0.085 | 0.058 | −0.952 | −0.149 | 0.646 | −0.223 |
Cr | 0.002 | 0.985 | 0.045 | 0.024 | 0.990 | −0.052 | −0.085 |
Mn | 0.134 | 0.972 | 0.057 | −0.005 | 0.969 | 0.059 | −0.051 |
Fe | 0.012 | 0.954 | 0.097 | 0.053 | 0.989 | 0.047 | −0.099 |
Zn | 0.242 | −0.049 | 0.792 | 0.083 | 0.038 | 0.695 | 0.178 |
Ni | 0.025 | 0.637 | −0.098 | −0.169 | 0.973 | −0.057 | −0.117 |
Cu | 0.028 | 0.094 | 0.817 | −0.155 | 0.162 | −0.006 | −0.625 |
EV | 3.886 | 3.039 | 1.227 | 1.050 | 4.351 | 3.551 | 1.199 |
V (%) | 32.4 | 25.3 | 10.2 | 8.7 | 36.3 | 29.6 | 10.0 |
CV (%) | 32.4 | 57.7 | 67.9 | 76.7 | 36.3 | 65.8 | 75.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuchdang, S.; Kingkam, W.; Tippawan, U.; Sriwiang, W.; Fungklin, R.; Rattanaphra, D. Metal Composition and Source Identification of PM2.5 and PM10 at a Suburban Site in Pathum Thani, Thailand. Atmosphere 2023, 14, 659. https://doi.org/10.3390/atmos14040659
Nuchdang S, Kingkam W, Tippawan U, Sriwiang W, Fungklin R, Rattanaphra D. Metal Composition and Source Identification of PM2.5 and PM10 at a Suburban Site in Pathum Thani, Thailand. Atmosphere. 2023; 14(4):659. https://doi.org/10.3390/atmos14040659
Chicago/Turabian StyleNuchdang, Sasikarn, Wilasinee Kingkam, Udomrat Tippawan, Wiranee Sriwiang, Ratchai Fungklin, and Dussadee Rattanaphra. 2023. "Metal Composition and Source Identification of PM2.5 and PM10 at a Suburban Site in Pathum Thani, Thailand" Atmosphere 14, no. 4: 659. https://doi.org/10.3390/atmos14040659
APA StyleNuchdang, S., Kingkam, W., Tippawan, U., Sriwiang, W., Fungklin, R., & Rattanaphra, D. (2023). Metal Composition and Source Identification of PM2.5 and PM10 at a Suburban Site in Pathum Thani, Thailand. Atmosphere, 14(4), 659. https://doi.org/10.3390/atmos14040659