Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of CSSP Extracts
2.2. Compound Identification by Gas Chromatography–Mass Spectrometry (GC-MS)
2.3. Computational Estrogenic Potential Prediction
2.4. Estrogenic Activity Measurement by Estrogen-Responsive Reporter Assay
3. Results
3.1. Preliminary Mass Spectrum-Based Compound Identification
3.2. ER-Modulating Potential Prediction
3.3. Identification of Estrogenic Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; U.S. Department of Health and Human Services, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2014.
- IARC. Tobacco smoke and involuntary smoking. In IARC Monographys on the Evaluation of the Carcinogenic Risk to Human; IARC, WHO: Lyon, France, 2004; Volume 83, pp. 1–1473. [Google Scholar]
- Schick, S.; Glantz, S. Philip Morris toxicological experiments with fresh sidestream smoke: More toxic than mainstream smoke. Tob. Control 2005, 14, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.C.; Cheng, L.C.; Lee, C.H.; Lin, C.J.; Chen, P.Y.; Li, L.A. Estrogen and cigarette sidestream smoke particulate matter exhibit ERalpha-dependent tumor-promoting effects in lung adenocarcinoma cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L477–L490. [Google Scholar] [CrossRef] [PubMed]
- Henschke, C.I.; Yip, R.; Miettinen, O.S. Women’s susceptibility to tobacco carcinogens and survival after diagnosis of lung cancer. JAMA 2006, 296, 180–184. [Google Scholar] [PubMed]
- Radzikowska, E.; Glaz, P.; Roszkowski, K. Lung cancer in women: Age, smoking, histology, performance status, stage, initial treatment and survival. Population-based study of 20 561 cases. Ann. Oncol. 2002, 13, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Olivo-Marston, S.E.; Mechanic, L.E.; Mollerup, S.; Bowman, E.D.; Remaley, A.T.; Forman, M.R.; Skaug, V.; Zheng, Y.L.; Haugen, A.; Harris, C.C. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women. Carcinogenesis 2010, 31, 1778–1786. [Google Scholar] [CrossRef]
- Ross, H.; Oldham, F.B.; Bandstra, B.; Sandalic, L.; Bianco, J.; Bonomi, P.; Singer, J.W. Serum-free estradiol (E2) levels are prognostic in men with chemotherapy-naive advanced non-small cell lung cancer (NSCLC) and performance status (PS) 2. J. Clin. Oncol. 2007, 25, 7683. [Google Scholar] [CrossRef]
- Niikawa, H.; Suzuki, T.; Miki, Y.; Suzuki, S.; Nagasaki, S.; Akahira, J.; Honma, S.; Evans, D.B.; Hayashi, S.; Kondo, T.; et al. Intratumoral estrogens and estrogen receptors in human non-small cell lung carcinoma. Clin. Cancer Res. 2008, 14, 4417–4426. [Google Scholar] [CrossRef]
- Kummer, V.; Maskova, J.; Zraly, Z.; Neca, J.; Simeckova, P.; Vondracek, J.; Machala, M. Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol. Lett. 2008, 180, 212–221. [Google Scholar] [CrossRef]
- Vondracek, J.; Kozubik, A.; Machala, M. Modulation of estrogen receptor-dependent reporter construct activation and G0/G1-S-phase transition by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells. Toxicol. Sci. 2002, 70, 193–201. [Google Scholar] [CrossRef]
- Lee, H.L.; Hsieh, D.P.; Li, L.A. Polycyclic aromatic hydrocarbons in cigarette sidestream smoke particulates from a Taiwanese brand and their carcinogenic relevance. Chemosphere 2011, 82, 477–482. [Google Scholar] [CrossRef]
- Darbre, P.D. Metalloestrogens: An emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J. Appl. Toxicol. 2006, 26, 191–197. [Google Scholar] [CrossRef]
- Cheng, L.C.; Lin, C.J.; Liu, H.J.; Li, L.A. Health risk of metal exposure via inhalation of cigarette sidestream smoke particulate matter. Environ. Sci. Pollut. Res. Int. 2019, 26, 10835–10845. [Google Scholar] [CrossRef]
- Peeler, C.L. Cigarette testing and federal trade commission: A historical overview. In Smoking and Tobacco Control; National Cancer Institute, National Institutes of Health: Bethesda, MD, USA, 1996; Volume 7, pp. 1–8. [Google Scholar]
- Browne, P.; Judson, R.S.; Casey, W.M.; Kleinstreuer, N.C.; Thomas, R.S. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model. Environ. Sci. Technol. 2015, 49, 8804–8814. [Google Scholar] [CrossRef]
- Mansouri, K.; Abdelaziz, A.; Rybacka, A.; Roncaglioni, A.; Tropsha, A.; Varnek, A.; Zakharov, A.; Worth, A.; Richard, A.M.; Grulke, C.M.; et al. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ. Health Perspect 2016, 124, 1023–1033. [Google Scholar] [CrossRef]
- Kuo, L.C.; Cheng, L.C.; Lin, C.J.; Li, L.A. Dioxin and estrogen signaling in lung adenocarcinoma cells with different aryl hydrocarbon receptor/estrogen receptor alpha phenotypes. Am. J. Respir. Cell Mol. Biol. 2013, 49, 1064–1073. [Google Scholar] [CrossRef]
- Thomas, R.S.; Paules, R.S.; Simeonov, A.; Fitzpatrick, S.C.; Crofton, K.M.; Casey, W.M.; Mendrick, D.L. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX 2018, 35, 163–168. [Google Scholar] [CrossRef]
- Williams, A.J.; Grulke, C.M.; Edwards, J.; McEachran, A.D.; Mansouri, K.; Baker, N.C.; Patlewicz, G.; Shah, I.; Wambaugh, J.F.; Judson, R.S.; et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J. Cheminform. 2017, 9, 61–87. [Google Scholar] [CrossRef]
- Martin, M.T.; Dix, D.J.; Judson, R.S.; Kavlock, R.J.; Reif, D.M.; Richard, A.M.; Rotroff, D.M.; Romanov, S.; Medvedev, A.; Poltoratskaya, N.; et al. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA’s Tox Cast program. Chem. Res. Toxicol. 2010, 23, 578–590. [Google Scholar] [CrossRef]
- IARC. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water. In IARC Monographys on the Evaluation of the Carcinogenic Risk to Human; IARC, WHO: Lyon, France, 2013; Volume 101, pp. 177–223. [Google Scholar]
- IARC. Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. In IARC Monographys on the Evaluation of the Carcinogenic Risk to Human; IARC, WHO: Lyon, France, 1999; Volume 71, pp. 337–349. [Google Scholar]
- Kamiya, M.; Toriba, A.; Onoda, Y.; Kizu, R.; Hayakawa, K. Evaluation of estrogenic activities of hydroxylated polycyclic aromatic hydrocarbons in cigarette smoke condensate. Food Chem. Toxicol. 2005, 43, 1017–1027. [Google Scholar] [CrossRef]
- Martin, M.B.; Reiter, R.; Johnson, M.; Shah, M.S.; Iann, M.C.; Singh, B.; Richards, J.K.; Wang, A.; Stoica, A. Effects of tobacco smoke condensate on estrogen receptor-alpha gene expression and activity. Endocrinol 2007, 148, 4676–4686. [Google Scholar] [CrossRef]
- Meek, M.D.; Finch, G.L. Diluted mainstream cigarette smoke condensates activate estrogen receptor and aryl hydrocarbon receptor-mediated gene transcription. Environ. Res. 1999, 80, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Takamura-Enya, T.; Ishihara, J.; Tahara, S.; Goto, S.; Totsuka, Y.; Sugimura, T.; Wakabayashi, K. Analysis of estrogenic activity of foodstuffs and cigarette smoke condensates using a yeast estrogen screening method. Food Chem. Toxicol. 2003, 41, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.B.; O’Malley, B.W. Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol. Cell Endocrinol. 2012, 348, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Weikum, E.R.; Liu, X.; Ortlund, E.A. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018, 27, 1876–1892. [Google Scholar] [CrossRef]
- Schlenk, D.; Stresser, D.M.; McCants, J.C.; Nimrod, A.C.; Benson, W.H. Influence of beta-naphthoflavone and methoxychlor pretreatment on the biotransformation and estrogenic activity of methoxychlor in channel catfish (Ictalurus punctatus). Toxicol. Appl. Pharmacol. 1997, 145, 349–356. [Google Scholar] [CrossRef]
- Kortenkamp, A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr. Opin. Pharmacol. 2014, 19, 105–111. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat. Rev. Cancer 2003, 3, 733–744. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H.; Yao, J. ERalpha, A Key Target for Cancer Therapy: A Review. Onco. Targets Ther. 2020, 13, 2183–2191. [Google Scholar] [CrossRef]
- Cheng, L.C.; Lin, C.J.; Chen, P.Y.; Li, L.A. ERalpha-dependent estrogen-TNFalpha signaling crosstalk increases cisplatin tolerance and migration of lung adenocarcinoma cells. Biochim. Biophys. Acta Gene Regul. Mech. 2021, 1864, 194715–194729. [Google Scholar] [CrossRef]
- Lin, S.; Lin, C.J.; Hsieh, D.P.; Li, L.A. ERalpha phenotype, estrogen level, and benzo[a]pyrene exposure modulate tumor growth and metabolism of lung adenocarcinoma cells. Lung Cancer 2012, 75, 285–292. [Google Scholar] [CrossRef]
- Benowitz, N.L. Nicotine addiction. N. Engl. J. Med. 2010, 362, 2295–2303. [Google Scholar] [CrossRef]
- Sanner, T.; Grimsrud, T.K. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment—A Review. Front. Oncol. 2015, 5, 196. [Google Scholar] [CrossRef]
- Jarzynka, M.J.; Guo, P.; Bar-Joseph, I.; Hu, B.; Cheng, S.Y. Estradiol and nicotine exposure enhances A549 bronchioloalveolar carcinoma xenograft growth in mice through the stimulation of angiogenesis. Int. J. Oncol. 2006, 28, 337–344. [Google Scholar] [CrossRef]
- Karaconji, I.B. Facts about nicotine toxicity. Arh. Hig. Rada. Toksikol. 2005, 56, 363–371. [Google Scholar]
- Health Council of the Netherlands: Committee on Updating of Occupational Exposure Limits. Nicotine; Health-Based Reassessment of Administrative Occupational Exposure Limits; Health Council of the Netherlands: Hague, The Netherlands, 2004. [Google Scholar]
Retention(min) 1 | Compound | NISTMS Number 2 | Match(%) 3 |
---|---|---|---|
7.98 | Phenol | 133,909 | 91 |
9.65 | o-Cresol | 228,359 | 95 |
9.94 | 2-Pyrrolidinone | 227,720 | 78 |
10.08 | p-Cresol | 395,159 | 97 |
10.54 | 3-Pyridinol | 829 | 87 |
11.02 | 2-Methyl-3-pyridinol | 33,210 | 83 |
12.25 | 4-Ethylphenol | 341,131 | 93 |
12.92 | Catechol | 227,771 | 96 |
13.40 | 1,4:3,6-Dianhydro-α-d-glucopyranose | 98,148 | 97 |
13.43 | 2,3-Dihydrobenzofuran | 229,752 | 80 |
14.57 | Hydroquinone | 228,148 | 95 |
15.45 | Indole | 353,133 | 93 |
15.85 | 2-Methoxy-4-vinylphenol | 135,956 | 83 |
16.26 | Methylhydroquinone | 229,907 | 93 |
16.35 | Triacetin | 229,309 | 83 |
1,2-Diacetin | 133,770 | 83 | |
16.63 | 2,6-Dimethoxyphenol | 231,854 | 92 |
16.72 | Nicotine | 232,303 | 97 |
17.54 | 3-Methylindole | 228,764 | 93 |
18.39 | Myosmine | 109,884 | 96 |
19.58 | Nicotyrine | 109,886 | 93 |
20.66 | 2,3′-Bipyridine | 229,245 | 97 |
20.74 | 4,4′-Bipyridine | 228,653 | 94 |
23.18 | 2-Phenylphenol | 113,331 | 81 |
24.00 | Cotinine | 334,060 | 97 |
24.75 | 9-Fluorenone | 229,079 | 83 |
25.55 | Phenanthrene | 113,931 | 94 |
26.01 | Phytyl acetate | 375,014 | 83 |
27.43 | Methyl hexadecanoate | 333,716 | 98 |
28.62 | β-Carboline | 1,006,882 | 91 |
Compound 1 | CAS 2 | ER Modulation Prediction 3 | ERα Agonist Activity 3 | ||
---|---|---|---|---|---|
ToxCast ER Model 4 | CERAPP 5 | ||||
Literature | Consensus | ||||
Catechol | 120-80-9 | 0.0155 | -- | -- | Active |
4-Ethylphenol | 123-07-9 | 0.00352 | -- | Antagonist: very weak Binding: very weak | Active |
Hydroquinone | 123-31-9 | 0 | -- | -- | Active |
2-Phenylphenol | 90-43-7 | 0.00543 | -- | Agonist: weakAntagonist: very weak Binding: weak | Active |
2-Methoxy-4-vinylphenol | 7786-61-0 | -- | -- | Agonist: weak Antagonist: very weak Binding: weak | -- |
Methylhydroquinone | 95-71-6 | -- | Binding: very weak | -- | -- |
Nicotine | 54-11-5 | 0 | -- | -- | Active |
Phenanthrene | 85-01-8 | 0 | -- | -- | Active |
2-Pyrrolidinone | 616-45-5 | 0 | -- | Binding: very weak | Active |
Triacetin | 102-76-1 | 0.0182 | Binding: very weak | -- | Active |
Compound | Assay | AC50 (μM) 1 |
---|---|---|
Catechol | ATG_ERE_CIS ATG_ERa_TRANS CCTE_Deisenroth_AIME_384WELL_LUC_Active_up OT_ER_ERaERa_1440 OT_ER_ERaERb_1440 TOX21_ERa_BLA_Agonist_ratio | 21.42 84.26 24.14 60.43 53.83 50.16 |
4-Ethylphenol | ATG_ERE_CIS ATG_ERa_TRANS OT_ER_ERaERb_0480 | 163.42 73.75 54.04 |
Hydroquinone | ATG_ERE_CIS ATG_ERa_TRANS CCTE_Deisenroth_AIME_96WELL_LUC_Active-up | 42.85 65.44 53.61 |
2-Phenylphenol | ATG_ERE_CIS ATG_ERa_TRANS CCTE_Deisenroth_AIME_384WELL_LUC_Active_up CCTE_Deisenroth_AIME _96WELL_LUC_Active_up OT_ER_ERaERb_0480 OT_ER_ERaERb_1440 | 11.96 30.24 56.06 80.54 82.65 36.93 |
Nicotine | ATG_ERE_CIS ATG_ERa_TRANS | 47.79 61.85 |
Phenanthrene | OT_ER_ERaERb_0480 | 42.52 |
ATG_hERa_XSP2 | 5.40 | |
2-Pyrrolidinone | TOX21_ERa_LUC_VM7_Agonist | 46.66 |
Triacetin | ATG_ERE_CIS ATG_ERa_TRANS | 104.15 39.31 |
Compound | μg/Cigarette 1 | μg/20 μg 2 | REL/TLV 3 | IARC 4 |
---|---|---|---|---|
Catechol | 294.54 | 0.254 | 20 mg/m3 | 2B |
4-Ethylphenol | 28.19 | 0.024 | ||
Hydroquinone | 221.55 | 0.191 | 2 mg/m3 | 3 |
2-Phenylphenol | nd 5 | nd | ||
2-Methoxy-4-vinylphenol | 28.96 | 0.025 | ||
Methoxyhydroquinone | 135.17 | 0.117 | ||
Nicotine | 3694.64 | 3.189 | 0.5 mg/m3 | |
2-Pyrrolidinone | 128.22 | 0.111 | ||
Triacetin | 157.57 | 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-J.; Li, L.-A. Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter. Atmosphere 2023, 14, 647. https://doi.org/10.3390/atmos14040647
Lin C-J, Li L-A. Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter. Atmosphere. 2023; 14(4):647. https://doi.org/10.3390/atmos14040647
Chicago/Turabian StyleLin, Chun-Ju, and Lih-Ann Li. 2023. "Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter" Atmosphere 14, no. 4: 647. https://doi.org/10.3390/atmos14040647
APA StyleLin, C.-J., & Li, L.-A. (2023). Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter. Atmosphere, 14(4), 647. https://doi.org/10.3390/atmos14040647