Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CSSP Extracts
2.2. Compound Identification by Gas Chromatography–Mass Spectrometry (GC-MS)
2.3. Computational Estrogenic Potential Prediction
2.4. Estrogenic Activity Measurement by Estrogen-Responsive Reporter Assay
3. Results
3.1. Preliminary Mass Spectrum-Based Compound Identification
3.2. ER-Modulating Potential Prediction
3.3. Identification of Estrogenic Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; U.S. Department of Health and Human Services, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2014.
- IARC. Tobacco smoke and involuntary smoking. In IARC Monographys on the Evaluation of the Carcinogenic Risk to Human; IARC, WHO: Lyon, France, 2004; Volume 83, pp. 1–1473. [Google Scholar]
- Schick, S.; Glantz, S. Philip Morris toxicological experiments with fresh sidestream smoke: More toxic than mainstream smoke. Tob. Control 2005, 14, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.C.; Cheng, L.C.; Lee, C.H.; Lin, C.J.; Chen, P.Y.; Li, L.A. Estrogen and cigarette sidestream smoke particulate matter exhibit ERalpha-dependent tumor-promoting effects in lung adenocarcinoma cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L477–L490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henschke, C.I.; Yip, R.; Miettinen, O.S. Women’s susceptibility to tobacco carcinogens and survival after diagnosis of lung cancer. JAMA 2006, 296, 180–184. [Google Scholar] [PubMed]
- Radzikowska, E.; Glaz, P.; Roszkowski, K. Lung cancer in women: Age, smoking, histology, performance status, stage, initial treatment and survival. Population-based study of 20 561 cases. Ann. Oncol. 2002, 13, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Olivo-Marston, S.E.; Mechanic, L.E.; Mollerup, S.; Bowman, E.D.; Remaley, A.T.; Forman, M.R.; Skaug, V.; Zheng, Y.L.; Haugen, A.; Harris, C.C. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women. Carcinogenesis 2010, 31, 1778–1786. [Google Scholar] [CrossRef] [Green Version]
- Ross, H.; Oldham, F.B.; Bandstra, B.; Sandalic, L.; Bianco, J.; Bonomi, P.; Singer, J.W. Serum-free estradiol (E2) levels are prognostic in men with chemotherapy-naive advanced non-small cell lung cancer (NSCLC) and performance status (PS) 2. J. Clin. Oncol. 2007, 25, 7683. [Google Scholar] [CrossRef]
- Niikawa, H.; Suzuki, T.; Miki, Y.; Suzuki, S.; Nagasaki, S.; Akahira, J.; Honma, S.; Evans, D.B.; Hayashi, S.; Kondo, T.; et al. Intratumoral estrogens and estrogen receptors in human non-small cell lung carcinoma. Clin. Cancer Res. 2008, 14, 4417–4426. [Google Scholar] [CrossRef] [Green Version]
- Kummer, V.; Maskova, J.; Zraly, Z.; Neca, J.; Simeckova, P.; Vondracek, J.; Machala, M. Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol. Lett. 2008, 180, 212–221. [Google Scholar] [CrossRef]
- Vondracek, J.; Kozubik, A.; Machala, M. Modulation of estrogen receptor-dependent reporter construct activation and G0/G1-S-phase transition by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells. Toxicol. Sci. 2002, 70, 193–201. [Google Scholar] [CrossRef]
- Lee, H.L.; Hsieh, D.P.; Li, L.A. Polycyclic aromatic hydrocarbons in cigarette sidestream smoke particulates from a Taiwanese brand and their carcinogenic relevance. Chemosphere 2011, 82, 477–482. [Google Scholar] [CrossRef]
- Darbre, P.D. Metalloestrogens: An emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J. Appl. Toxicol. 2006, 26, 191–197. [Google Scholar] [CrossRef]
- Cheng, L.C.; Lin, C.J.; Liu, H.J.; Li, L.A. Health risk of metal exposure via inhalation of cigarette sidestream smoke particulate matter. Environ. Sci. Pollut. Res. Int. 2019, 26, 10835–10845. [Google Scholar] [CrossRef]
- Peeler, C.L. Cigarette testing and federal trade commission: A historical overview. In Smoking and Tobacco Control; National Cancer Institute, National Institutes of Health: Bethesda, MD, USA, 1996; Volume 7, pp. 1–8. [Google Scholar]
- Browne, P.; Judson, R.S.; Casey, W.M.; Kleinstreuer, N.C.; Thomas, R.S. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model. Environ. Sci. Technol. 2015, 49, 8804–8814. [Google Scholar] [CrossRef]
- Mansouri, K.; Abdelaziz, A.; Rybacka, A.; Roncaglioni, A.; Tropsha, A.; Varnek, A.; Zakharov, A.; Worth, A.; Richard, A.M.; Grulke, C.M.; et al. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ. Health Perspect 2016, 124, 1023–1033. [Google Scholar] [CrossRef]
- Kuo, L.C.; Cheng, L.C.; Lin, C.J.; Li, L.A. Dioxin and estrogen signaling in lung adenocarcinoma cells with different aryl hydrocarbon receptor/estrogen receptor alpha phenotypes. Am. J. Respir. Cell Mol. Biol. 2013, 49, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.S.; Paules, R.S.; Simeonov, A.; Fitzpatrick, S.C.; Crofton, K.M.; Casey, W.M.; Mendrick, D.L. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX 2018, 35, 163–168. [Google Scholar] [CrossRef]
- Williams, A.J.; Grulke, C.M.; Edwards, J.; McEachran, A.D.; Mansouri, K.; Baker, N.C.; Patlewicz, G.; Shah, I.; Wambaugh, J.F.; Judson, R.S.; et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J. Cheminform. 2017, 9, 61–87. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.T.; Dix, D.J.; Judson, R.S.; Kavlock, R.J.; Reif, D.M.; Richard, A.M.; Rotroff, D.M.; Romanov, S.; Medvedev, A.; Poltoratskaya, N.; et al. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA’s Tox Cast program. Chem. Res. Toxicol. 2010, 23, 578–590. [Google Scholar] [CrossRef]
- IARC. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water. In IARC Monographys on the Evaluation of the Carcinogenic Risk to Human; IARC, WHO: Lyon, France, 2013; Volume 101, pp. 177–223. [Google Scholar]
- IARC. Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. In IARC Monographys on the Evaluation of the Carcinogenic Risk to Human; IARC, WHO: Lyon, France, 1999; Volume 71, pp. 337–349. [Google Scholar]
- Kamiya, M.; Toriba, A.; Onoda, Y.; Kizu, R.; Hayakawa, K. Evaluation of estrogenic activities of hydroxylated polycyclic aromatic hydrocarbons in cigarette smoke condensate. Food Chem. Toxicol. 2005, 43, 1017–1027. [Google Scholar] [CrossRef]
- Martin, M.B.; Reiter, R.; Johnson, M.; Shah, M.S.; Iann, M.C.; Singh, B.; Richards, J.K.; Wang, A.; Stoica, A. Effects of tobacco smoke condensate on estrogen receptor-alpha gene expression and activity. Endocrinol 2007, 148, 4676–4686. [Google Scholar] [CrossRef] [Green Version]
- Meek, M.D.; Finch, G.L. Diluted mainstream cigarette smoke condensates activate estrogen receptor and aryl hydrocarbon receptor-mediated gene transcription. Environ. Res. 1999, 80, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Takamura-Enya, T.; Ishihara, J.; Tahara, S.; Goto, S.; Totsuka, Y.; Sugimura, T.; Wakabayashi, K. Analysis of estrogenic activity of foodstuffs and cigarette smoke condensates using a yeast estrogen screening method. Food Chem. Toxicol. 2003, 41, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.B.; O’Malley, B.W. Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol. Cell Endocrinol. 2012, 348, 430–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weikum, E.R.; Liu, X.; Ortlund, E.A. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018, 27, 1876–1892. [Google Scholar] [CrossRef] [Green Version]
- Schlenk, D.; Stresser, D.M.; McCants, J.C.; Nimrod, A.C.; Benson, W.H. Influence of beta-naphthoflavone and methoxychlor pretreatment on the biotransformation and estrogenic activity of methoxychlor in channel catfish (Ictalurus punctatus). Toxicol. Appl. Pharmacol. 1997, 145, 349–356. [Google Scholar] [CrossRef]
- Kortenkamp, A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr. Opin. Pharmacol. 2014, 19, 105–111. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat. Rev. Cancer 2003, 3, 733–744. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H.; Yao, J. ERalpha, A Key Target for Cancer Therapy: A Review. Onco. Targets Ther. 2020, 13, 2183–2191. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.C.; Lin, C.J.; Chen, P.Y.; Li, L.A. ERalpha-dependent estrogen-TNFalpha signaling crosstalk increases cisplatin tolerance and migration of lung adenocarcinoma cells. Biochim. Biophys. Acta Gene Regul. Mech. 2021, 1864, 194715–194729. [Google Scholar] [CrossRef]
- Lin, S.; Lin, C.J.; Hsieh, D.P.; Li, L.A. ERalpha phenotype, estrogen level, and benzo[a]pyrene exposure modulate tumor growth and metabolism of lung adenocarcinoma cells. Lung Cancer 2012, 75, 285–292. [Google Scholar] [CrossRef]
- Benowitz, N.L. Nicotine addiction. N. Engl. J. Med. 2010, 362, 2295–2303. [Google Scholar] [CrossRef]
- Sanner, T.; Grimsrud, T.K. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment—A Review. Front. Oncol. 2015, 5, 196. [Google Scholar] [CrossRef] [Green Version]
- Jarzynka, M.J.; Guo, P.; Bar-Joseph, I.; Hu, B.; Cheng, S.Y. Estradiol and nicotine exposure enhances A549 bronchioloalveolar carcinoma xenograft growth in mice through the stimulation of angiogenesis. Int. J. Oncol. 2006, 28, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Karaconji, I.B. Facts about nicotine toxicity. Arh. Hig. Rada. Toksikol. 2005, 56, 363–371. [Google Scholar]
- Health Council of the Netherlands: Committee on Updating of Occupational Exposure Limits. Nicotine; Health-Based Reassessment of Administrative Occupational Exposure Limits; Health Council of the Netherlands: Hague, The Netherlands, 2004. [Google Scholar]
Retention(min) 1 | Compound | NISTMS Number 2 | Match(%) 3 |
---|---|---|---|
7.98 | Phenol | 133,909 | 91 |
9.65 | o-Cresol | 228,359 | 95 |
9.94 | 2-Pyrrolidinone | 227,720 | 78 |
10.08 | p-Cresol | 395,159 | 97 |
10.54 | 3-Pyridinol | 829 | 87 |
11.02 | 2-Methyl-3-pyridinol | 33,210 | 83 |
12.25 | 4-Ethylphenol | 341,131 | 93 |
12.92 | Catechol | 227,771 | 96 |
13.40 | 1,4:3,6-Dianhydro-α-d-glucopyranose | 98,148 | 97 |
13.43 | 2,3-Dihydrobenzofuran | 229,752 | 80 |
14.57 | Hydroquinone | 228,148 | 95 |
15.45 | Indole | 353,133 | 93 |
15.85 | 2-Methoxy-4-vinylphenol | 135,956 | 83 |
16.26 | Methylhydroquinone | 229,907 | 93 |
16.35 | Triacetin | 229,309 | 83 |
1,2-Diacetin | 133,770 | 83 | |
16.63 | 2,6-Dimethoxyphenol | 231,854 | 92 |
16.72 | Nicotine | 232,303 | 97 |
17.54 | 3-Methylindole | 228,764 | 93 |
18.39 | Myosmine | 109,884 | 96 |
19.58 | Nicotyrine | 109,886 | 93 |
20.66 | 2,3′-Bipyridine | 229,245 | 97 |
20.74 | 4,4′-Bipyridine | 228,653 | 94 |
23.18 | 2-Phenylphenol | 113,331 | 81 |
24.00 | Cotinine | 334,060 | 97 |
24.75 | 9-Fluorenone | 229,079 | 83 |
25.55 | Phenanthrene | 113,931 | 94 |
26.01 | Phytyl acetate | 375,014 | 83 |
27.43 | Methyl hexadecanoate | 333,716 | 98 |
28.62 | β-Carboline | 1,006,882 | 91 |
Compound 1 | CAS 2 | ER Modulation Prediction 3 | ERα Agonist Activity 3 | ||
---|---|---|---|---|---|
ToxCast ER Model 4 | CERAPP 5 | ||||
Literature | Consensus | ||||
Catechol | 120-80-9 | 0.0155 | -- | -- | Active |
4-Ethylphenol | 123-07-9 | 0.00352 | -- | Antagonist: very weak Binding: very weak | Active |
Hydroquinone | 123-31-9 | 0 | -- | -- | Active |
2-Phenylphenol | 90-43-7 | 0.00543 | -- | Agonist: weakAntagonist: very weak Binding: weak | Active |
2-Methoxy-4-vinylphenol | 7786-61-0 | -- | -- | Agonist: weak Antagonist: very weak Binding: weak | -- |
Methylhydroquinone | 95-71-6 | -- | Binding: very weak | -- | -- |
Nicotine | 54-11-5 | 0 | -- | -- | Active |
Phenanthrene | 85-01-8 | 0 | -- | -- | Active |
2-Pyrrolidinone | 616-45-5 | 0 | -- | Binding: very weak | Active |
Triacetin | 102-76-1 | 0.0182 | Binding: very weak | -- | Active |
Compound | Assay | AC50 (μM) 1 |
---|---|---|
Catechol | ATG_ERE_CIS ATG_ERa_TRANS CCTE_Deisenroth_AIME_384WELL_LUC_Active_up OT_ER_ERaERa_1440 OT_ER_ERaERb_1440 TOX21_ERa_BLA_Agonist_ratio | 21.42 84.26 24.14 60.43 53.83 50.16 |
4-Ethylphenol | ATG_ERE_CIS ATG_ERa_TRANS OT_ER_ERaERb_0480 | 163.42 73.75 54.04 |
Hydroquinone | ATG_ERE_CIS ATG_ERa_TRANS CCTE_Deisenroth_AIME_96WELL_LUC_Active-up | 42.85 65.44 53.61 |
2-Phenylphenol | ATG_ERE_CIS ATG_ERa_TRANS CCTE_Deisenroth_AIME_384WELL_LUC_Active_up CCTE_Deisenroth_AIME _96WELL_LUC_Active_up OT_ER_ERaERb_0480 OT_ER_ERaERb_1440 | 11.96 30.24 56.06 80.54 82.65 36.93 |
Nicotine | ATG_ERE_CIS ATG_ERa_TRANS | 47.79 61.85 |
Phenanthrene | OT_ER_ERaERb_0480 | 42.52 |
ATG_hERa_XSP2 | 5.40 | |
2-Pyrrolidinone | TOX21_ERa_LUC_VM7_Agonist | 46.66 |
Triacetin | ATG_ERE_CIS ATG_ERa_TRANS | 104.15 39.31 |
Compound | μg/Cigarette 1 | μg/20 μg 2 | REL/TLV 3 | IARC 4 |
---|---|---|---|---|
Catechol | 294.54 | 0.254 | 20 mg/m3 | 2B |
4-Ethylphenol | 28.19 | 0.024 | ||
Hydroquinone | 221.55 | 0.191 | 2 mg/m3 | 3 |
2-Phenylphenol | nd 5 | nd | ||
2-Methoxy-4-vinylphenol | 28.96 | 0.025 | ||
Methoxyhydroquinone | 135.17 | 0.117 | ||
Nicotine | 3694.64 | 3.189 | 0.5 mg/m3 | |
2-Pyrrolidinone | 128.22 | 0.111 | ||
Triacetin | 157.57 | 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-J.; Li, L.-A. Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter. Atmosphere 2023, 14, 647. https://doi.org/10.3390/atmos14040647
Lin C-J, Li L-A. Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter. Atmosphere. 2023; 14(4):647. https://doi.org/10.3390/atmos14040647
Chicago/Turabian StyleLin, Chun-Ju, and Lih-Ann Li. 2023. "Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter" Atmosphere 14, no. 4: 647. https://doi.org/10.3390/atmos14040647
APA StyleLin, C. -J., & Li, L. -A. (2023). Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter. Atmosphere, 14(4), 647. https://doi.org/10.3390/atmos14040647