Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Mass Concentrations of PM2.5
2.2.2. Meteorological Data
2.2.3. Satellite-Derived Data
2.3. Conditional Bivariate Probability Function (CBPF)
2.4. Backward Air Trajectory and Trajectory Cluster Analysis
2.4.1. Backward Air Trajectory
2.4.2. Trajectory Cluster Analysis
2.5. Three-Dimensional Hybrid Receptor Models
2.6. Data Visualization and Statistical Analysis
3. Results and Discussion
3.1. Mass Concentrations of PM2.5
3.2. Local Emission Source Areas of PM2.5
3.3. Non-Local Emission Source Areas of PM2.5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ADB. Vietnam: Validation of the Country Partnership Strategy Final Review, 2016–2020; Asian Development Bank (ADB): Mandaluyong, Philippines, 2021. [Google Scholar]
- MONRE. Report of the National Environmental Status; Ministry of Natural Resources and Environment of Vietnam (MONRE): Ha Noi, Vietnam, 2021. [Google Scholar]
- WBG. Climate Risk Country Profile: Vietnam; The World Bank Group and Asian Developement Bank: Manila, Philippines, 2021. [Google Scholar]
- DONRE. Report of the Environmental Status of Ho Chi Minh City; Department of Natural Resources and Environment (DONRE): Ho Chi Minh, Vietnam, 2021. [Google Scholar]
- Hien, T.T.; Chi, N.D.T.; Nguyen, N.T.; Vinh, L.X.; Takenaka, N.; Huy, D.H. Current status of fine particulate matter (PM2.5) in Vietnam’s most populous city, Ho Chi Minh City. Aerosol Air Qual. Res. 2019, 19, 2239–2251. [Google Scholar] [CrossRef]
- Le, T.G.; Ngo, L.; Mehta, S.; Do, V.D.; Thach, T.Q.; Vu, X.D.; Nguyen, D.T.; Cohen, A. Effects of short-term exposure to air pollution on hospital admissions of young children for acute lower respiratory infections in Ho Chi Minh City, Vietnam. Res. Rep. (Health Eff. Inst.) 2012, 169, 5–72. [Google Scholar]
- Toriyama, K.; Fukae, K.; Suda, Y.; Kiyose, T.; Oda, T.; Fujii, Y.; Doan Thien Chi, N.; Huu Huy, D.; Thi Hien, T.; Takenaka, N. NO2 and HONO concentrations measured with filter pack sampling and high HONO/NO2 ratio in Ho Chi Minh city, Vietnam. Atmos. Res. 2019, 214, 116865. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO (World Health Organization): Geneva, Switzerland, 2021. [Google Scholar]
- MONRE. National Technical Regulation on Ambient Air Quality (QCVN 05:2013/BTNMT); MONRE (Ministry of Natuaral Resources and Environmemt): Ha Noi, Vietnam, 2013. [Google Scholar]
- Adgate, J.L.; Mongin, S.J.; Pratt, G.C.; Zhang, J.; Field, M.P.; Ramachandran, G.; Sexton, K. Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5. Sci. Total Environ. 2007, 386, 21–32. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Ho, Q.B.; Vu, H.N.K.; Nguyen, T.T.; Nguyen, T.T.H.; Nguyen, T.T.T. A combination of bottom-up and top-down approaches for calculating of air emission for developing countries: A case of Ho Chi Minh City, Vietnam. Air Qual. Atmos. Health 2019, 12, 1059–1072. [Google Scholar] [CrossRef]
- Nguyen, T.T.Q.; Takeuchi, W.; Misra, P.; Hayashida, S. Technical note: Emission mapping of key sectors in Ho Chi Minh City, Vietnam, using satellite-derived urban land use data. Atmos. Chem. Phys. 2021, 21, 2795–2818. [Google Scholar] [CrossRef]
- Ho, B.Q.; Vu, K.H.N.; Nguyen, T.T.; Nguyen, H.T.T.; Ho, D.M.; Nguyen, H.N.; Nguyen, T.T.T. Study loading capacties of air pollutant emissions for developing countries: A case of Ho Chi Minh City, Vietnam. Sci. Rep. 2020, 10, 5827. [Google Scholar] [CrossRef]
- Huy, D.H.; Hien, T.T.; Takenaka, N. Influence of urban outflow on water-soluble ions in PM2.5 and >PM2.5 particles at a suburban Ho Chi Minh City site, Vietnam. Atmos. Res. 2022, 272, 106144. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Res. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Uria-Tellaetxe, I.; Carslaw, D.C. Conditional bivariate probability function for source identification. Environ. Model. Softw. 2014, 59, 1–9. [Google Scholar] [CrossRef]
- Nguyen, T.N.T.; Vuong, Q.T.; Lee, S.-J.; Xiao, H.; Choi, S.-D. Identification of source areas of polycyclic aromatic hydrocarbons in Ulsan, South Korea, using hybrid receptor models and the conditional bivariate probability function. Environ. Sci. Process. Impacts 2022, 24, 140–151. [Google Scholar] [CrossRef]
- Ali-Taleshi, M.S.; Moeinaddini, M.; Riyahi Bakhtiari, A.; Feiznia, S.; Squizzato, S.; Bourliva, A. A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-specific cancer risk assessment. Environ. Pollut. 2021, 274, 115883. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. Assessment of local and distant sources of urban PM2.5 in middle Indo-Gangetic plain of India using statistical modeling. Atmos. Res. 2018, 213, 275–287. [Google Scholar] [CrossRef]
- Squizzato, S.; Cazzaro, M.; Innocente, E.; Visin, F.; Hopke, P.K.; Rampazzo, G. Urban air quality in a mid-size city—PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmos. Res. 2017, 186, 51–62. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Modell. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Kim, I.S.; Wee, D.; Kim, Y.P.; Lee, J.Y. Development and application of three-dimensional potential source contribution function (3D-PSCF). Environ. Sci. Pollut. Res. 2016, 23, 16946–16954. [Google Scholar] [CrossRef]
- Cai, Q.; Tong, L.; Zhang, J.; Zheng, J.; He, M.; Lin, J.; Chen, X.; Xiao, H. Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry. Environ. Eng. Res. 2019, 24, 690–698. [Google Scholar] [CrossRef]
- Wang, Y.Q. An open source software suite for multi-dimensional meteorological data computation and visualisation. J. Open Res. Softw. 2019, 7, 21. [Google Scholar] [CrossRef]
- Fan, A.; Hopke, P.K.; Raunemaa, T.M.; Öblad, M.; Pacyna, J.M. A study on the potential sources of air pollutants observed at Tjörn, Sweden. Environ. Sci. Pollut. Res. 1995, 2, 107–115. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Kim, I.S.; Lee, J.Y.; Wee, D.; Kim, Y.P. Estimation of the contribution of biomass fuel burning activities in North Korea to the air quality in Seoul, South Korea: Application of the 3D-PSCF method. Atmos. Res. 2019, 230, 104628. [Google Scholar] [CrossRef]
- Dimitriou, K.; Grivas, G.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Assessing the contribution of regional sources to urban air pollution by applying 3D-PSCF modeling. Atmos. Res. 2021, 248, 105187. [Google Scholar] [CrossRef]
- Stojić, A.; Stanišić Stojić, S. The innovative concept of three-dimensional hybrid receptor modeling. Atmos. Res. 2017, 164, 216–223. [Google Scholar] [CrossRef]
- Wagner, P.; Schäfer, K. Influence of mixing layer height on air pollutant concentrations in an urban street canyon. Urban Clim. 2017, 22, 64–79. [Google Scholar] [CrossRef]
- Pekney, N.J.; Davidson, C.I.; Zhou, L.; Hopke, P.K. Application of PSCF and CPF to PMF-modeled sources of PM2.5 in Pittsburgh. Aerosol Sci. Technol. 2006, 40, 952–961. [Google Scholar] [CrossRef]
- Vu, H.N.K.; Ha, Q.P.; Nguyen, D.H.; Nguyen, T.T.T.; Nguyen, T.T.; Nguyen, T.T.H.; Tran, N.D.; Ho, B.Q. Poor air quality and its association with mortality in Ho Chi Minh City: Case Study. Atmosphere 2020, 11, 750. [Google Scholar] [CrossRef]
- Ho, B.Q.; Khue Vu, H.N.; Nguyen, T.T.; Nguyen, T.-T.G.; Diep, T.-Q.N.; Vo, P.L.; Pham, T.-K.N. Modeling impacts of industrial park activity on air quality of surrounding area for identifying isolation distance: A case of Tan Tao Industrial Park, Ho Chi Minh City, Viet Nam. IOP Conf. Ser. Earth Environ. Sci. 2022, 964, 012023. [Google Scholar] [CrossRef]
- Mukherjee, A.; Toohey, D.W. A study of aerosol properties based on observations of particulate matter from the U.S. Embassy in Beijing, China. Earth’s Future 2016, 4, 381–395. [Google Scholar] [CrossRef]
- Ali, S.M.; Malik, F.; Anjum, M.S.; Siddiqui, G.F.; Anwar, M.N.; Lam, S.S.; Nizami, A.-S.; Khokhar, M.F. Exploring the linkage between PM2.5 levels and COVID-19 spread and its implications for socio-economic circles. Environ. Res. 2021, 193, 110421. [Google Scholar] [CrossRef]
- Shukla, K.; Aggarwal, S.G. A technical overview on beta-attenuation method for the monitoring of particulate matter in ambient air. Aerosol Air Qual. Res. 2022, 22, 220195. [Google Scholar] [CrossRef]
- Huang, G. Missing data filling method based on linear interpolation and lightgbm. J. Phys. Conf. Ser. 2021, 1754, 012187. [Google Scholar] [CrossRef]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Platnick, S. MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA. 2015. Available online: http://dx.doi.org/10.5067/MODIS/MOD08_M3.006 (accessed on 1 February 2022).
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_rad_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Radiation Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2T1NXRAD_5.12.4/summary (accessed on 1 February 2022).
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2019. Available online: https://catalog.data.gov/dataset/gpm-imerg-final-precipitation-l3-1-day-0-1-degree-x-0-1-degree-v06-gpm-3imergdf-at-ges-dis (accessed on 1 February 2022).
- Jeričević, A.; Gašparac, G.; Mikulec, M.M.; Kumar, P.; Prtenjak, M.T. Identification of diverse air pollution sources in a complex urban area of Croatia. J. Environ. Manag. 2019, 243, 67–77. [Google Scholar] [CrossRef]
- Team, R. RStudio: Integrated Development for R. Available online: http://www.rstudio.com/ (accessed on 1 February 2022).
- Simmonds, P.G.; Seuring, S.; Nickless, G.; Derwent, R.G. Segregation and interpretation of ozone and carbon monoxide measurements by air mass origin at the TOR station mace head, Ireland from 1987 to 1995. J. Atmos. Chem. 1997, 28, 45–59. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Edwards, A.W.F.; Cavalli-Sforza, L.L. A method for cluster analysis. Biometrics 1965, 21, 362–375. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fu, S.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmos. Res. 2018, 203, 207–215. [Google Scholar] [CrossRef]
- Wondola, D.; Aulele, S.; Lembang, F. Partial Least Square (PLS) method of addressing multicollinearity problems in multiple linear regressions (Case studies: Cost of electricity bills and factors affecting it). J. Phys. Conf. Ser. 2020, 1463, 012006. [Google Scholar] [CrossRef]
- Čulić, V. Triggering of cardiac arrhythmias. J. Am. Coll. Cardiol. 2014, 63, 1226–1227. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.-P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Gramsch, E.; Cáceres, D.; Oyola, P.; Reyes, F.; Vásquez, Y.; Rubio, M.A.; Sánchez, G. Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration. Atmos. Res. 2014, 98, 290–298. [Google Scholar] [CrossRef]
- Nam, N.T.T.; Trinh, N.N.; Thu, N.T.M.; Bảo, P.T. Characteristics and effect of the temperature inversion on concentrations of fine particulate matter (PM2.5) in Ho Chi Minh city, Vietnam. J. Hydro-Meteorol. 2023, 746, 87–95. [Google Scholar] [CrossRef]
- Pushpawela, B.; Shelton, S.; Liyanage, G.; Jayasekara, S.; Rajapaksha, D.; Jayasundara, A.; Jayasuriya, L.D. Changes of Air Pollutants in Urban Cities during the COVID-19 Lockdown-Sri Lanka. Aerosol Air Qual. Res. 2023, 23, 220223. [Google Scholar] [CrossRef]
- Shelton, S.; Liyanage, G.; Jayasekara, S.; Pushpawela, B.; Rathnayake, U.; Jayasundara, A.; Jayasooriya, L.D. Seasonal Variability of Air Pollutants and Their Relationships to Meteorological Parameters in an Urban Environment. Adv. Meteorol. 2022, 2022, 5628911. [Google Scholar] [CrossRef]
- Huong Giang, N.T.; Kim Oanh, N.T. Roadside levels and traffic emission rates of PM2.5 and BTEX in Ho Chi Minh City, Vietnam. Atmos. Environ. 2014, 94, 806–816. [Google Scholar] [CrossRef]
- Liang, L.; Engling, G.; Cheng, Y.; Zhang, X.; Sun, J.; Xu, W.; Liu, C.; Zhang, G.; Xu, H.; Liu, X.; et al. Influence of high relative humidity on secondary organic carbon: Observations at a background site in East China. J. Meteorol. Res. 2019, 33, 905–913. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Morawska, L. The influence of wind speed on new particle formation events in an urban environment. Atmos. Res. 2019, 215, 37–41. [Google Scholar] [CrossRef]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L.; et al. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef]
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Murrells, T.; Williams, A. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmos. Res. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Kroll, J.H.; Seinfeld, J.H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Res. 2008, 42, 3593–3624. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Morawska, L. Differentiating between particle formation and growth events in an urban environment. Atmos. Chem. Phys. 2018, 18, 11171–11183. [Google Scholar] [CrossRef]
- Sadanaga, Y.; Matsumoto, J.; Kajii, Y. Photochemical reactions in the urban air: Recent understandings of radical chemistry. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 85–104. [Google Scholar] [CrossRef]
- Hai, C.D.; Kim Oanh, N.T. Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi. Atmos. Res. 2013, 78, 105–112. [Google Scholar] [CrossRef]
- Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass concentrations and carbonaceous compositions of PM1.0, PM2.5, and PM10 at urban locations of Hanoi, Vietnam. Aerosol Air Qual. Res. 2018, 18, 1591–1605. [Google Scholar] [CrossRef]
- Oanh, N.T.K.; Kongpran, J.; Hang, N.T.; Parkpian, P.; Hung, N.T.Q.; Lee, S.B.; Bae, G.N. Characterization of gaseous pollutants and PM2.5 at fixed roadsides and along vehicle traveling routes in Bangkok Metropolitan Region. Atmos. Res. 2013, 77, 674–685. [Google Scholar]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Suttinun, O.; Deelaman, W.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; Palakun, J.; et al. Impacts of PM2.5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmos. Pollut. Res. 2020, 11, 1657–1667. [Google Scholar] [CrossRef]
- Sinaga, D.; Setyawati, W.; Cheng, F.Y.; Lung, S.-C.C. Investigation on daily exposure to PM2.5 in Bandung city, Indonesia using low-cost sensor. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 1001–1012. [Google Scholar] [CrossRef]
- Khan, M.F.; Sulong, N.A.; Latif, M.T.; Nadzir, M.S.M.; Amil, N.; Hussain, D.F.M.; Lee, V.; Hosaini, P.N.; Shaharom, S.; Yusoff, N.A.Y.M.; et al. Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). J. Geophys. Res. Atmos. 2016, 121, 14,589–14,611. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Czech, H.; Pieber, S.M.; Schnelle-Kreis, J.; Steinbacher, M.; Orasche, J.; Henne, S.; Popovicheva, O.B.; Abbaszade, G.; Engling, G.; et al. Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: A case study in northwestern Vietnam. Atmos. Chem. Phys. 2021, 21, 8293–8312. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Locating and quantifying PCB sources in Chicago: Receptor modeling and field sampling. Environ. Sci. Technol. 2003, 37, 681–690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.T.; Du, N.X.; Hoa, N.T. Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam. Atmosphere 2023, 14, 579. https://doi.org/10.3390/atmos14030579
Nguyen TNT, Du NX, Hoa NT. Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam. Atmosphere. 2023; 14(3):579. https://doi.org/10.3390/atmos14030579
Chicago/Turabian StyleNguyen, Tuyet Nam Thi, Nguyen Xuan Du, and Nguyen Thi Hoa. 2023. "Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam" Atmosphere 14, no. 3: 579. https://doi.org/10.3390/atmos14030579
APA StyleNguyen, T. N. T., Du, N. X., & Hoa, N. T. (2023). Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam. Atmosphere, 14(3), 579. https://doi.org/10.3390/atmos14030579