Distribution and Long-Term Trends of Tropospheric Ozone Concentrations in Ireland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sites
2.2. Measurements
2.3. Data Processing and Analysis
3. Results
3.1. Annual Concentrations
3.2. Seasonal Pattern
3.3. Weekly and Daily Pattern
3.4. Long-Term Trends in Concentrations
4. Discussion
4.1. Spatial Variation of O3 Concentrations
4.2. Temporal Variation of O3 Concentrations
4.3. Long-Term Trends in O3 Concentrations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CLRTAP. CLRTAP. 2016. Towards Cleaner Air; Scientific Assessment Report 2016; Maas, R., Grennfelt, P., Eds.; EMEP Steering Body and Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution: Oslo, Norway, 2016; p.12. [Google Scholar]
- WHO. Review of Evidence on Health Aspects of Air Pollution–REVIHAAP Project; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- EEA. Health Effects of Exposure to Ozone. 2016. Available online: https://www.eea.europa.eu/publications/TOP08-98/page010.html (accessed on 25 January 2023).
- Mills, G.; Wagg, S.; Harmens, H. Ozone Pollution: Impacts on Ecosystem Services and Biodiversity; NERC/Centre for Ecology & Hydrology: Lancaster, UK, 2013. [Google Scholar]
- Fowler, D.; Amann, M.; Anderson, R.; Ashmore, M.; Cox, P.; Depledge, M.; Derwent, D.; Grennfelt, P.; Hewitt, N.; Hov, O.; et al. Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications; The Royal Society: London, UK, 2008. [Google Scholar]
- Pusede, S.E.; Cohen, R.C. On the observed response of ozone to NO x and VOC reactivity reductions in San Joaquin Valley California 1995–present. Atmos. Chem. Phys. 2012, 12, 8323–8339. [Google Scholar] [CrossRef] [Green Version]
- Sicard, P.; Paoletti, E.; Agathokleous, E.; Araminienė, V.; Proietti, C.; Coulibaly, F.; De Marco, A. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ. Res. 2020, 191, 110193. [Google Scholar] [CrossRef] [PubMed]
- Coggon, M.M.; Gkatzelis, G.I.; McDonald, B.C.; Gilman, J.B.; Schwantes, R.H.; Abuhassan, N.; Aikin, K.C.; Arend, M.F.; Berkoff, T.A.; Brown, S.S.; et al. Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proc. Natl. Acad. Sci. USA 2021, 118, e2026653118. [Google Scholar] [CrossRef]
- Sicard, P. Ground-level ozone over time: An observation-based global overview. Curr. Opin. Environ. Sci. Health 2021, 19, 100226. [Google Scholar] [CrossRef]
- EPA 2021. Available online: https://www.epa.ie/publications/monitoring--assessment/climate-change/air-emissions/EPA-Irelands-Air-Pollutant-Emissions-report_2021Final.pdf (accessed on 25 January 2023).
- Duffy, P.; Black, K.; Fahey, D.; Hyde, B.; Kehoe, A.; Monaghan, S.; Murphy, J.; Ryan, A.; Ponzi, J. Ireland’s National Inventory Report 2022 Greenhouse Gas Emissions 1990–2020 Reported to the United Nations Framework Convention on Climate Change; Envioronmental Protection Agency: Wexford, Ireland, 2022. [Google Scholar]
- Andersson, C.; Langner, J.; Bergstroumm, R. Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus B Chem. Phys. Meteorol. 2007, 59, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef] [Green Version]
- Meleux, F.; Solmon, F.; Giorgi, F. Increase in summer European ozone amounts due to climate change. Atmos. Environ. 2007, 41, 7577–7587. [Google Scholar] [CrossRef]
- Creilson, J.K.; Fishman, J.; Wozniak, A.E. Intercontinental transport of tropospheric ozone: A study of its seasonal variability across the North Atlantic utilizing tropospheric ozone residuals and its relationship to the North Atlantic Oscillation. Atmos. Chem. Phys. 2003, 3, 2053–2066. [Google Scholar] [CrossRef] [Green Version]
- Young, P.J.; Archibald, A.T.; Bowman, K.W.; Lamarque, J.F.; Naik, V.; Stevenson, D.S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 2063–2090. [Google Scholar] [CrossRef] [Green Version]
- Parrish, D.D.; Derwent, R.G.; Steinbrecht, W.; Stübi, R.; Van Malderen, R.; Steinbacher, M.; Trickl, T.; Ries, L.; Xu, X. Zonal similarity of long-term changes and seasonal cycles of baseline ozone at northern midlatitudes. J. Geophys. Res. Atmos. 2020, 125, e2019JD031908. [Google Scholar] [CrossRef]
- Derwent, R.G.; Manning, A.J.; Simmonds, P.G.; Spain, T.G.; O’Doherty, S. Long-term trends in ozone in baseline and European regionally-polluted air at Mace Head, Ireland over a 30-year period. Atmos. Environ. 2018, 179, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.E.; Klingberg, J.; Engardt, M.; Andersson, C.; Langner, J.; Karlsson, G.P.; Pleijel, H. Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe. Sci. Total Environ. 2017, 576, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; De Marco, A.; Beddows, D.C.; Harrison, R.M.; Manning, W.J. Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ. Pollut. 2014, 192, 295–299. [Google Scholar] [CrossRef]
- Yan, Y.; Pozzer, A.; Ojha, N.; Lin, J.; Lelieveld, J. Analysis of European ozone trends in the period 1995–2014. Atmos. Chem. Phys. 2018, 18, 5589–5605. [Google Scholar] [CrossRef] [Green Version]
- Cooper, O.R.; Parrish, D.D.; Ziemke, J.; Balashov, N.V.; Cupeiro, M.; Galbally, I.E.; Gilge, S.; Horowitz, L.; Jensen, N.R.; Lamarque, J.F.; et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anthr. 2014, 2, 000029. [Google Scholar] [CrossRef]
- Soleimanian, E.; Wang, Y.; Estes, M. Long-term trend in surface ozone in Houston-Galveston-Brazoria: Sectoral contributions based on changes in volatile organic compounds. Environ. Pollut. 2022, 308, 119647. [Google Scholar] [CrossRef]
- Sicard, P.; Serra, R.; Rossello, P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res. 2016, 149, 122–144. [Google Scholar] [CrossRef]
- Tripathi, O.P.; Jennings, S.G.; Colman, L.; Lambkin, K.; Moran, E.; O’Dowd, C. Ozone Levels, Changes and Trends over Ireland: An Integrated Analysis; Environmental Protection Agency: Wexford, Ireland, 2010. [Google Scholar]
- Tripathi, O.P.; Jennings, S.G.; O’Dowd, C.; O’Leary, B.; Lambkin, K.; Moran, E.; O’Doherty, S.J.; Spain, T.G. An assessment of the surface ozone trend in Ireland relevant to air pollution and environmental protection. Atmos. Poll. Res. 2012, 3, 341–351. [Google Scholar] [CrossRef] [Green Version]
- de Kluizenaar, Y.; Aherne, J.; Farrell, E.P. Concentrations, cumulative exposure tand critical levels of ozone in Ireland. Water Air Soil Pollut. Focus 2001, 1, 197–210. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E.; et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anthr. 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat 1990, 6, 3–73. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. Available online: https://www.R-project.org/ (accessed on 25 January 2023).
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.C.; Fleming, Z.L.; Monks, P.S.; Clain, G.; Henne, S.; Konovalov, I.B.; Szopa, S.; Menut, L. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005. Atmos. Chem. Phys. 2012, 12, 437–454. [Google Scholar] [CrossRef] [Green Version]
- Sicard, P.; De Marco, A.; Troussier, F.; Renou, C.; Vas, N.; Paoletti, E. Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos. Environ. 2013, 79, 705–715. [Google Scholar] [CrossRef]
- Jenkin, M.E. Investigation of an oxidant-based methodology for AOT40 exposure assessment in the UK. Atmos. Environ. 2014, 94, 332–340. [Google Scholar] [CrossRef]
- Pleijel, H.; Klingberg, J.; Karlsson, G.P.; Engardt, M.; Karlsson, E. Surface ozone in the marine environment—Horizontal ozone concentration gradients in coastal areas. Water Air Soil Pollut. 2013, 224, 1–10. [Google Scholar] [CrossRef]
- Simpson, D.; Ashmore, M.R.; Emberson, L.; Tuovinen, J.P. A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study. Environ. Pollut. 2007, 146, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anthr. 2018, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Monks, P.S. A review of the observations and origins of the spring ozone maximum. Atmos. Environ. 2000, 34, 3545–3561. [Google Scholar] [CrossRef]
- Collins, W.J.; Derwent, R.G.; Garnier, B.; Johnson, C.E.; Sanderson, M.G.; Stevenson, D.S. Effect of stratosphere-troposphere exchange on the future tropospheric ozone trend. J. Geophys. Res. Atmos. 2003, 108, 8528. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, G.; Monks, P.S.; Bauguitte, S.; Bandy, B.J.; Penkett, S.A. A seasonal comparison of the ozone photochemistry in clean and polluted air masses at Mace Head, Ireland. J. Atmos. Chem. 2002, 41, 163–187. [Google Scholar] [CrossRef]
- Derwent, R.; Parrish, D.; Simmonds, P.G.; O’Doherty, S.J.; Spain, T.G. Seasonal cycles in baseline mixing ratios of a large number of trace gases at the Mace Head, Ireland atmospheric research station. Atmos. Environ. 2020, 233, 117531. [Google Scholar] [CrossRef]
- Schultz, M.G.; Heil, A.; Hoelzemann, J.J.; Spessa, A.; Thonicke, K.; Goldammer, J.; Held, A.C.; Pereira, J.M.; van het Bolscher, M. Global emissions from wildland fires from 1960 to 2000. Glob. Biogeochem. Cycles 2008, 22, 2. [Google Scholar] [CrossRef]
- Hall, S.J.; Matson, P.A.; Roth, P.M. NOx emissions from soil: Implications for air quality modeling in agricultural regions. Annu. Rev. Energy Environ. 1996, 21, 311–346. [Google Scholar] [CrossRef]
- Tarasick, D.; Galbally, I.E.; Cooper, O.R.; Schultz, M.G.; Ancellet, G.; Leblanc, T.; Wallington, T.J.; Ziemke, J.; Liu, X.; Steinbacher, M.; et al. Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem. Sci. Anthr. 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Derwent, R.G.; Manning, A.J.; Simmonds, P.G.; Spain, T.G.; O’Doherty, S. Analysis and interpretation of 25 years of ozone observations at the Mace Head Atmospheric Research Station on the Atlantic Ocean coast of Ireland from 1987 to 2012. Atmos. Environ. 2013, 80, 361–368. [Google Scholar] [CrossRef]
- Jenkin, M.E. Trends in ozone concentration distributions in the UK since 1990: Local, regional and global influences. Atmos. Environ. 2008, 42, 5434–5445. [Google Scholar] [CrossRef]
- Diaz, F.M.; Khan, M.A.H.; Shallcross, B.M.; Shallcross, E.D.; Vogt, U.; Shallcross, D.E. Ozone trends in the United Kingdom over the last 30 years. Atmosphere 2020, 11, 534. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Wernli, H.; Shadwick, D.; Oltmans, S.J.; Shapiro, M. Quantifying the importance of stratospheric-tropospheric transport on surface ozone concentrations at high-and low-elevation monitoring sites in the United States. Atmos. Environ. 2012, 62, 646–656. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Pongratz, J. Anthropogenic and Natural Radiative Forcing; Climate Change 2013: The Physical Science Basis; Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, CA, USA, 2014; pp. 659–740. [Google Scholar]
Station Name | ID | Landcover | Network | Altitude (m) | Latitude | Longitude | Start |
---|---|---|---|---|---|---|---|
Belfast | BFT | Urban | AURN | 8 | 54.5996 | –5.9288 | 1992 |
Castlebar | CBR | Suburban | EPA | 39 | 53.8511 | –9.3003 | 2010 |
Clonskeagh | CSK | Suburban | EPA | 25 | 53.3118 | –6.2353 | 2009 |
Cork | CSL | Urban | EPA | 10 | 51.8785 | –8.4651 | 2015 |
Emo | EMO | Rural | EPA | 20 | 53.1076 | –7.1983 | 2004 |
Kilkitt | KKT | Rural | EPA | 170 | 54.0661 | –6.8831 | 1995 |
Lough Navar | LNV | Rural | AURN | 130 | 54.4395 | –7.9003 | 1987 |
Mace Head | MHD | Atlantic | EPA | 8 | 53.3253 | –9.9036 | 1987 |
Rathmines | RTM | Urban | EPA | 25 | 53.3320 | –6.2672 | 2002 |
Seville Lodge | SVL | Suburban | EPA | 50 | 52.6383 | –7.2676 | 2012 |
Valentia | VAL | Atlantic | EPA | 10 | 51.9385 | –10.2401 | 2001 |
Station | Annual (24 h) | Annual (24 h) | Daytime | Daytime | Night-Time | Night-Time |
---|---|---|---|---|---|---|
Period | 2010–2019 | 2005–2019 | 2010–2019 | 2005–2019 | 2010–2019 | 2005–2019 |
MHD | 0.18 | 0.02 | 0.14 | 0 | 0.22 | 0.05 |
VAL | 0.22 | −0.04 | 0.21 | −0.11 | 0.19 | 0.01 |
KKT | 0.17 | 0.04 | 0.27 | 0.13 | 0.05 | −0.05 |
CBR | 0.47 * | 0.42 * | 0.59 * | |||
EMO | 0.93 *** | 0.47 *** | 0.91 *** | 0.47 *** | 0.97 *** | 0.48 *** |
LNV | −0.18 | 0.15+ | −0.20 | 0.33 *** | −0.14 | −0.02 |
CSK | 0.23 | 0.12 | 0.32 | |||
RTM | 0.42 + | 0.09 | 0.24 | 0.04 | 0.52 * | 0.11 |
BFT | 0.31 * | 0.15 | 0.37 * | 0.31 ** | 0.24 | −0.3 |
Station | Spring | Spring | Summer | Summer | Autumn | Autumn | Winter | Winter |
---|---|---|---|---|---|---|---|---|
Period | 2010–2019 | 2005–2019 | 2010–2019 | 2005–2019 | 2010–2019 | 2005–2019 | 2010–2019 | 2005–2019 |
MHD | 0.33 | −0.14 | 0.25 | −0.01 | −0.18 | −0.09 | 0.68 | 0.55 ** |
VAL | 0.93 | −0.39 | 0.23 | −0.17 | −0.66 | −0.02 | 1.36 | 0.40 |
KKT | −0.06 | −0.09 | 0.14 | −0.07 | 0.13 | −0.16 | 0.29 | 0.34 |
CBR | 0.36 | 0.74 | 0.08 | 1.28 | ||||
EMO | 0.55 | 0.11 | 1.00+ | 0.50 + | 0.44 | 0.22 | 1.66 | 1.08 * |
LNV | −0.12 | 0.07 | −0.27 | −0.02 | −0.67 | 0.06 | 0.58 | 0.84+ |
CSK | 0.21 | 0.59 | −0.51 | 1.21 | ||||
RTM | 0.79 | 0.03 | 0.36 | 0.05 | 0.06 | 0.10 | 1.07 | 0.68 |
BFT | 0.38 | 0.03 | 0.37 | 0.20 | −0.23 | −0.02 | 0.68 | 0.56 + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McHugh, K.; Cummins, T.; Aherne, J. Distribution and Long-Term Trends of Tropospheric Ozone Concentrations in Ireland. Atmosphere 2023, 14, 569. https://doi.org/10.3390/atmos14030569
McHugh K, Cummins T, Aherne J. Distribution and Long-Term Trends of Tropospheric Ozone Concentrations in Ireland. Atmosphere. 2023; 14(3):569. https://doi.org/10.3390/atmos14030569
Chicago/Turabian StyleMcHugh, Keelan, Thomas Cummins, and Julian Aherne. 2023. "Distribution and Long-Term Trends of Tropospheric Ozone Concentrations in Ireland" Atmosphere 14, no. 3: 569. https://doi.org/10.3390/atmos14030569
APA StyleMcHugh, K., Cummins, T., & Aherne, J. (2023). Distribution and Long-Term Trends of Tropospheric Ozone Concentrations in Ireland. Atmosphere, 14(3), 569. https://doi.org/10.3390/atmos14030569