Role of Aerosols on Atmospheric Circulation in Regional Climate Experiments over Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Experiments
2.2. Principal Components Analysis (PCA)
2.3. Calculation of Circulation Types
2.4. Characterization of the Differences between CTs
3. Results and Discussion
3.1. Circulation Types
3.2. Differences in Circulation Types
3.3. AOD Anomaly
3.4. Thickness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOD | Aerosol optical depth |
ARCI | Aerosol–radiation–cloud interactions |
ARI | Aerosol–radiation interactions |
BC | Black carbon |
CCN | Cloud condensation nuclei |
CT | Circulation type |
EOF | Empirical orthogonal function |
OC | Organic carbon |
PC | Principal component |
PCA | Principal components analysis |
SEAS | Sea salt |
SLP | Sea level pressure |
SULF | Sulfates |
WRF | Weather Research and Forecasting model |
References
- Hertig, E.; Russo, A.; Trigo, R.M. Heat and Ozone Pollution Waves in Central and South Europe—Characteristics, Weather Types, and Association with Mortality. Atmosphere 2020, 11, 1271. [Google Scholar] [CrossRef]
- Kučerová, M.; Beck, C.; Philipp, A.; Huth, R. Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. Int. J. Climatol. 2017, 37, 2502–2521. [Google Scholar] [CrossRef]
- Richardson, D.; Kilsby, C.G.; Fowler, H.J.; Bárdossy, A. Weekly to multi-month persistence in sets of daily weather patterns over Europe and the North Atlantic Ocean. Int. J. Climatol. 2019, 39, 2041–2056. [Google Scholar] [CrossRef]
- Mittermeier, M.; Weigert, M.; Rügamer, D.; Küchenhoff, H.; Ludwig, R. A deep learning based classification of atmospheric circulation types over Europe: Projection of future changes in a CMIP6 large ensemble. Environ. Res. Lett. 2022, 17, 084021. [Google Scholar] [CrossRef]
- Huguenin, M.F.; Fischer, E.M.; Kotlarski, S.; Scherrer, S.C.; Schwierz, C.; Knutti, R. Lack of Change in the Projected Frequency and Persistence of Atmospheric Circulation Types Over Central Europe. Geophys. Res. Lett. 2020, 47, e2019GL086132. [Google Scholar] [CrossRef]
- Glassmeier, F.; Hoffmann, F.; Johnson, J.S.; Yamaguchi, T.; Carslaw, K.S.; Feingold, G. Aerosol–cloud-climate cooling overestimated by ship-track data. Science 2021, 371, 485–489. [Google Scholar] [CrossRef]
- Jerez, S.; Palacios-Peńa, L.; Gutiérrez, C.; Jiménez-Guerrero, P.; López-Romero, J.M.; Pravia-Sarabia, E.; Montávez, J.P. Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols. Geosci. Model Dev. 2021, 14, 1533–1551. [Google Scholar] [CrossRef]
- Palacios-Pe na, L.; Jiménez-Guerrero, P.; Baró, R.; Balzarini, A.; Bianconi, R.; Curci, G.; Landi, T.C.; Pirovano, G.; Prank, M.; Riccio, A.; et al. Aerosol optical properties over Europe: An evaluation of the AQMEII Phase 3 simulations against satellite observations. Atmos. Chem. Phys. 2019, 19, 2965–2990. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Peña, L.; Montávez, J.P.; López-Romero, J.M.; Jerez, S.; Gómez-Navarro, J.J.; Lorente-Plazas, R.; Ruiz, J.; Jiménez-Guerrero, P. Added Value of Aerosol–cloud Interactions for Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry Model over Europe. Atmosphere 2020, 11, 360. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Carlson, B.E.; Yung, Y.L.; Lv, D.; Hansen, J.; Penner, J.E.; Liao, H.; Ramaswamy, V.; Kahn, R.A.; Zhang, P.; et al. Scattering and absorbing aerosols in the climate system. Nat. Rev. Earth Environ. 2022, 3, 363–379. [Google Scholar] [CrossRef]
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C. Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China. Atmos. Chem. Phys. 2021, 21, 16555–16574. [Google Scholar] [CrossRef]
- López-Romero, J.M.; Montávez, J.P.; Jerez, S.; Lorente-Plazas, R.; Palacios-Pe na, L.; Jiménez-Guerrero, P. Precipitation response to aerosol–radiation and aerosol–cloud interactions in regional climate simulations over Europe. Atmos. Chem. Phys. 2021, 21, 415–430. [Google Scholar] [CrossRef]
- Su, T.; Li, Z.; Li, C.; Li, J.; Han, W.; Shen, C.; Tan, W.; Wei, J.; Guo, J. The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol–planetary boundary layer (PBL) interactions. Atmos. Chem. Phys. 2020, 20, 3713–3724. [Google Scholar] [CrossRef] [Green Version]
- Baró, R.; Lorente-Plazas, R.; Montávez, J.P.; Jiménez-Guerrero, P. Biomass burning aerosol impact on surface winds during the 2010 Russian heat wave. Geophys. Res. Lett. 2017, 44, 1088–1094. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Fei, K.c.; Wu, L.; Zeng, Q.c. Aerosol Optical Depth and Burden From Large Sea Salt Particles. J. Geophys. Res. Atmos. 2019, 124, 1680–1696. [Google Scholar] [CrossRef]
- Boé, J.; Somot, S.; Corre, L.; Nabat, P. Large discrepancies in summer climate change over Europe as projected by global and regional climate models: Causes and consequences. Clim. Dyn. 2020, 54, 2981–3002. [Google Scholar] [CrossRef]
- Palacios-Pe na, L.; Lorente-Plazas, R.; Montávez, J.P.; Jiménez-Guerrero, P. Saharan Dust Modeling Over the Mediterranean Basin and Central Europe: Does the Resolution Matter? Front. Earth Sci. 2019, 7, 290. [Google Scholar] [CrossRef] [Green Version]
- Nabat, P.; Somot, S.; Cassou, C.; Mallet, M.; Michou, M.; Bouniol, D.; Decharme, B.; Drugé, T.; Roehrig, R.; Saint-Martin, D. Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region. Atmos. Chem. Phys. 2020, 20, 8315–8349. [Google Scholar] [CrossRef]
- Tarín-Carrasco, P.; Im, U.; Geels, C.; Palacios-Pe na, L.; Jiménez-Guerrero, P. Contribution of fine particulate matter to present and future premature mortality over Europe: A non-linear response. Environ. Int. 2021, 153, 106517. [Google Scholar] [CrossRef]
- Tarín-Carrasco, P.; Im, U.; Geels, C.; Palacios-Pe na, L.; Jiménez-Guerrero, P. Reducing future air-pollution-related premature mortality over Europe by mitigating emissions from the energy sector: Assessing an 80% renewable energies scenario. Atmos. Chem. Phys. 2022, 22, 3945–3965. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note -475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008.
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled online chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Fast, J.D.; Gustafson, W.I., Jr.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Chapman, E.G.; Gustafson, W.I., Jr.; Easter, R.C.; Barnard, J.C.; Ghan, S.J.; Pekour, M.S.; Fast, J.D. Coupling aerosol–cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.; Bouwer, L.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Tewari, M.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R. Implementation and verification of the united NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2016; pp. 11–15. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Ahmadov, R.; McKeen, S.A.; Robinson, A.L.; Bahreini, R.; Middlebrook, A.M.; de Gouw, J.A.; Meagher, J.; Hsie, E.Y.; Edgerton, E.; Shaw, S.; et al. A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Lamarque, J.F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Guerrero, P.; Gómez-Navarro, J.; Baró, R.; Lorente-Plazas, R.; Ratola, N.; Montávez, J. Is there a common pattern of future gas-phase air pollution in Europe under diverse climate change scenarios? Clim. Chang. 2013, 121, 661–671. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Zhang, R. Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol–cloud interaction. J. Geophys. Res. Atmos. 2008, 113, D15211. [Google Scholar] [CrossRef]
- Ghan, S.J.; Leung, L.R.; Easter, R.C.; Abdul-Razzak, H. Prediction of cloud droplet number in a general circulation model. J. Geophys. Res. Atmos. 1997, 102, 21777–21794. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Daum, P.H.; McGraw, R.L. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys. Res. Lett. 2005, 32, L11811. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M. A Solar Radiation Parameterization (CLIRAD-SW) Developed at Goddard Climate and Radiation Branch for Atmospheric Studies; NASA Technical Memorandum NASA/TM-1999-104606; NASA: Washington, DC, USA, 1999; 51p.
- García-Valero, J.; Montávez, J.; Jerez, S.; Gómez-Navarro, J.; Lorente-Plazas, R.; Jiménez-Guerrero, P. A seasonal study of the atmospheric dynamics over the Iberian Peninsula based on circulation types. Theor. Appl. Climatol. 2012, 110, 291–310. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2011. [Google Scholar]
- Lemus-Canovas, M.; Lopez-Bustins, J.A.; Martin-Vide, J.; Royé, D. SynoptReg: An R package for computing a synoptic climate classification and a spatial regionalization of environmental data. Environ. Model. Softw. 2019, 118, 114–119. [Google Scholar] [CrossRef]
- Hothorn, T.; Hornik, K.; van de Wiel, M.A.; Zeileis, A. Implementing a class of permutation tests: The coin package. J. Stat. Softw. 2008, 28, 1–23. [Google Scholar] [CrossRef]
- Casado, M.; Pastor, M.; Doblas-Reyes, F. Euro-Atlantic circulation types and modes of variability in winter. Theor. Appl. Climatol. 2008, 96, 17–29. [Google Scholar] [CrossRef]
- Esteban, P.; Martin-Vide, J.; Mases, M. Daily atmospheric circulation catalogue for Western Europe using multivariate techniques. Int. J. Climatol. 2006, 26, 1501–1515. [Google Scholar] [CrossRef]
- Pravia-Sarabia, E.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P.; Montávez, J.P. Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones. Atmos. Chem. Phys. 2021, 21, 13353–13368. [Google Scholar] [CrossRef]
- Pravia-Sarabia, E.; Halifa-Marín, A.; Gómez-Navarro, J.J.; Palacios-Peña, L.; Jiménez-Guerrero, P.; Montávez, J.P. On the role of aerosols in the production of orographically-induced extreme rainfall in near-maritime environments. Atmos. Res. 2022, 268, 106001. [Google Scholar] [CrossRef]
CT | BASE | ARCI | ARI | ARCI-BASE | ARI-BASE |
---|---|---|---|---|---|
CT1 | |||||
CT2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garnés-Morales, G.; Montávez, J.P.; Halifa-Marín, A.; Jiménez-Guerrero, P. Role of Aerosols on Atmospheric Circulation in Regional Climate Experiments over Europe. Atmosphere 2023, 14, 491. https://doi.org/10.3390/atmos14030491
Garnés-Morales G, Montávez JP, Halifa-Marín A, Jiménez-Guerrero P. Role of Aerosols on Atmospheric Circulation in Regional Climate Experiments over Europe. Atmosphere. 2023; 14(3):491. https://doi.org/10.3390/atmos14030491
Chicago/Turabian StyleGarnés-Morales, Ginés, Juan Pedro Montávez, Amar Halifa-Marín, and Pedro Jiménez-Guerrero. 2023. "Role of Aerosols on Atmospheric Circulation in Regional Climate Experiments over Europe" Atmosphere 14, no. 3: 491. https://doi.org/10.3390/atmos14030491
APA StyleGarnés-Morales, G., Montávez, J. P., Halifa-Marín, A., & Jiménez-Guerrero, P. (2023). Role of Aerosols on Atmospheric Circulation in Regional Climate Experiments over Europe. Atmosphere, 14(3), 491. https://doi.org/10.3390/atmos14030491