Characteristics of Surface Ozone and Nitrogen Oxides over a Typical City in the Yangtze River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Measurement Methods
2.3. Air Mass Transport Analysis
3. Results and Discussion
3.1. Diurnal Variations
3.2. Monthly Variations
3.3. Impacts of Special Events
3.4. Impacts of Air Mass Transport
3.5. Trends in O3 and NOx Mixing Ratios from 2015 to 2021
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.; Zhang, C.; Bi, J. Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China. Environ. Res. 2017, 158, 542–552. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.C.; McKeen, S.A.; Cui, Y.Y.; Ahmadov, R.; Kim, S.-W.; Frost, G.J.; Pollack, I.B.; Peischl, J.; Ryerson, T.B.; Holloway, J.S.; et al. Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. Environ. Sci. Technol. 2018, 52, 7360–7370. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xu, X.; Lin, M.; Lin, W.; Tarasick, D.; Tang, J.; Ma, J.; Zheng, X. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China—Part 2: The roles of anthropogenic emissions and climate variability. Atmos. Chem. Phys. 2018, 18, 773–798. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, C.K.; Barrett, S.R.H.; Koo, J.; Wang, Q. Temporal and spatial variability in the aviation NOx-related O3 impact. Environ. Res. Lett. 2013, 8, 034027. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, R.R.; Kondragunta, S.; Stenchikov, G.; Civerolo, K.L.; Doddridge, B.G. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 1997, 278, 827–830. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Beirle, S.; Zhang, Q.; Dörner, S.; He, K.; Wagner, T. NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmos. Chem. Phys. 2016, 16, 5283–5298. [Google Scholar] [CrossRef] [Green Version]
- Sillman, S. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res. 1995, 100, 14175–14188. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.X.; Liu, H.; Xu, J.Y.; Fu, K.; Klimont, Z.; Hao, J.M.; He, K.B.; Cofala, J.; Amann, M. NOx emissions in China: Historical trends and future perspectives. Atmos. Chem. Phys. 2013, 13, 9869–9897. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Zhang, Q.; Yan, R.; Wang, S.; Li, P.; Chen, B.; Liu, W.; Zhang, X. Origin of air pollution during a weekly heavy haze episode in Hangzhou, China. Environ. Chem. Lett. 2014, 12, 543–550. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Shi, C.; Wang, S.; Liu, R.; Zhou, R.; Li, D.; Wang, W.; Li, Z.; Cheng, T.; Zhou, B. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China. Atmos. Res. 2015, 153, 235–249. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; Wang, Z.; Du, H.; Yang, W.; Sun, Y.; Hu, B.; Li, J.; Wang, W.; Wang, T.; et al. Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia. Sci. Total Environ. 2018, 622–623, 1327–1342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, H.; Qi, B.; Du, R.; Gui, K.; Wang, H.; Jiang, W.; Liang, L.; Xu, W. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China. Atmos. Chem. Phys. 2018, 18, 1705–1728. [Google Scholar] [CrossRef] [Green Version]
- Bae, C.; Kim, H.C.; Kim, B.-U.; Kim, S. Surface ozone response to satellite-constrained NOx emission adjustments and its implications. Environ. Pollut. 2020, 258, 113469. [Google Scholar] [CrossRef] [PubMed]
- Boleti, E.; Hueglin, C.; Takahama, S. Trends of surface maximum ozone concentrations in Switzerland based on meteorological adjustment for the period 1990–2014. Atmos. Environ. 2019, 213, 326–336. [Google Scholar] [CrossRef]
- Pearce, J.L.; Beringer, J.; Nicholls, N.; Hyndman, R.J.; Tapper, N.J. Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos. Environ. 2011, 45, 1328–1336. [Google Scholar] [CrossRef]
- Cheng, N.; Li, R.; Xu, C.; Chen, Z.; Chen, D.; Meng, F.; Cheng, B.; Ma, Z.; Zhuang, Y.; He, B.; et al. Ground ozone variations at an urban and a rural station in Beijing from 2006 to 2017: Trend, meteorological influences and formation regimes. J. Clean. Prod. 2019, 235, 11–20. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, H.; Yu, J.; He, M.; Xu, N.; Zhang, J.; Qian, F.; Feng, J.; Xiao, H. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China. Atmos. Res. 2017, 187, 57–68. [Google Scholar] [CrossRef]
- Vogel, B.; Riemer, N.; Vogel, H.; Fiedler, F. Findings on NOy as an indicator for ozone sensitivity based on different numerical simulations. J. Geophys. Res. Atmos. 1999, 104, 3605–3620. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Xia, Z.G.; Wang, H.; Li, W. Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmos. Res. 2007, 85, 310–337. [Google Scholar] [CrossRef]
- Wang, J.; Ho, S.S.H.; Ma, S.; Cao, J.; Dai, W.; Liu, S.; Shen, Z.; Huang, R.; Wang, G.; Han, Y. Characterization of PM2.5 in Guangzhou, China: Uses of organic markers for supporting source apportionment. Sci. Total Environ. 2016, 550, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, J.; Huang, Y.; Xiu, G. Characterization of Black Carbon and Its Correlations with VOCs in the Northern Region of Hangzhou Bay in Shanghai, China. Atmosphere 2021, 12, 870. [Google Scholar] [CrossRef]
- Gao, W.; Tie, X.; Xu, J.; Huang, R.; Mao, X.; Zhou, G.; Chang, L. Long-term trend of O3 in a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors. Sci. Total Environ. 2017, 603–604, 425–433. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, X.; Nie, W.; Shen, Y.; Zheng, L.; Xie, Y.; Wang, T.; Ding, K.; Liu, L.; Zhou, D.; et al. Impact of Biomass Burning and Vertical Mixing of Residual-Layer Aged Plumes on Ozone in the Yangtze River Delta, China: A Tethered-Balloon Measurement and Modeling Study of a Multiday Ozone Episode. J. Geophys. Res. Atmos. 2018, 123, 11,786–11,803. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric Chemistry of VOCs and NOx. Atmos. Environ. 2002, 34, 2063–2101. [Google Scholar] [CrossRef]
- Wang, N.; Lyu, X.; Deng, X.; Huang, X.; Jiang, F.; Ding, A. Aggravating O3 pollution due to NOx emission control in eastern China. Sci. Total Environ. 2019, 677, 732–744. [Google Scholar] [CrossRef]
- An, J.; Shi, Y.; Wang, J.; Zhu, B. Temporal Variations of O3 and NOx in the Urban Background Atmosphere of Nanjing, East China. Arch. Environ. Contam. Toxicol. 2016, 71, 224–234. [Google Scholar] [CrossRef]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos. Res. 2016, 176–177, 64–74. [Google Scholar] [CrossRef]
- Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.M.; Petäjä, T.; Su, H.; Cheng, Y.F.; Yang, X.Q.; Wang, M.H.; et al. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Yang, L.; Wu, S.; Hao, J. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008, 88, 25–35. [Google Scholar] [CrossRef]
- Xie, M.; Zhu, K.; Wang, T.; Chen, P.; Han, Y.; Li, S.; Zhuang, B.; Shu, L. Temporal characterization and regional contribution to O3 and NOx at an urban and a suburban site in Nanjing, China. Sci. Total Environ. 2016, 551–552, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Yin, Y.; Zhang, J.; Ding, Y. Observational study of surface ozone at an urban site in East China. Atmos. Res. 2008, 89, 252–261. [Google Scholar] [CrossRef]
- Wang, Y.; Konopka, P.; Liu, Y.; Chen, H.; Mvller, R.; Ploger, F.; Riese, M.; Cai, Z.; Lv, D. Tropospheric ozone trend over Beijing from 2002–2010: Ozonesonde measurements and modelling analysis. Atmos. Chem. Phys. 2012, 12, 8389–8399. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Fang, S.X.; Pieter, P.T.; Yao, B.; Luan, T.; Wu, Y.L.; Yu, D.J. Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport. Sci. China Earth Sci. 2017, 60, 1886–1895. [Google Scholar] [CrossRef]
- Shah, V.; Jacob, D.J.; Li, K.; Silvern, R.F.; Zhai, S.; Liu, M.; Lin, J.; Zhang, Q. Effect of changing NOx; lifetime on the seasonality and long-term trends of satellite-observed tropospheric NOx columns over China. Atmos. Chem. Phys. 2020, 20, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Swamy, Y.V.; Venkanna, R.; Nikhil, G.N.; Chitanya, D.N.S.K.; Sinha, P.R.; Ramakrishna, M.; Rao, A.G. Impact of Nitrogen Oxides, Volatile Organic Compounds and Black Carbon on Atmospheric Ozone Levels at a Semi Arid Urban Site in Hyderabad. Aerosol Air Qual. Res. 2012, 12, 662–671. [Google Scholar] [CrossRef] [Green Version]
- David, L.; Nair, P. Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions. J. Geophys. Res. 2011, 116, D10303. [Google Scholar] [CrossRef]
- Wimmers, A.J. Signatures of tropopause folding in satellite imagery. J. Geophys. Res. 2003, 108, 8360. [Google Scholar] [CrossRef]
- Laisk, A.; Kull, O.; Moldau, H. Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol. 1989, 90, 1163–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kašpar, V.; Zapletal, M.; Samec, P.; Komárek, j.; Bílek, J.; Juráñ, S. Unmanned aerial systems for modelling air pollution removal by urban greenery. J. Ufug. 2022, 78, 127757. [Google Scholar] [CrossRef]
- Xue, J.; Tian, W.; Zhang, Q. Development of NOx Emission Inventory from Motor Vehicles in Hangzhou and Study on Its Inflience on Air Quality. Res. Environ. Sci. 2010, 23, 613–618. [Google Scholar]
- Lal, S.; Naja, M.; Subbaraya, B.H. Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos. Environ. 2000, 34, 2713–2724. [Google Scholar] [CrossRef]
- Sadanaga, Y.; Shibata, S.; Hamana, M.; Takenaka, N.; Bandow, H. Weekday/weekend difference of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmos. Environ. 2008, 42, 4708–4723. [Google Scholar] [CrossRef]
- Schipa, I.; Tanzarella, A.; Mangia, C. Differences between weekend and weekday ozone levels over rural and urban sites in Southern Italy. Environ. Monit. Assess. 2009, 156, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Hu, B.; Ji, D.S.; Liu, Z.R.; Tang, G.Q.; Xin, J.Y.; Zhang, H.X.; Song, T.; Wang, L.L.; Gao, W.K.; et al. Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China. Atmos. Chem. Phys. 2014, 14, 2419–2429. [Google Scholar] [CrossRef] [Green Version]
- Pont, V.; Fontan, J. Comparison between weekend and weekday ozone concentration in large cities in France. Atmos. Environ. 2001, 35, 1527–1535. [Google Scholar] [CrossRef]
- Song, X.; Hao, Y. Vehicular emission inventory and reduction scenario analysis in the Yangtze River Delta, China. Int. J. Environ. Res. Pub. He. 2019, 16, 4790. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, L.; Tang, X. Ozone concentrations in rural regions of the Yangtze River Delta in China. J. Atmos. Chem. 2006, 54, 255–265. [Google Scholar] [CrossRef]
- Xu, X.; Lin, W.; Wang, T.; Yan, P.; Tang, J.; Meng, Z.; Wang, Y. Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: Enhanced variability. Atomos. Chem. Phys. 2008, 8, 2595–2607. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Oanh, N. Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in relation to O3 precursor concentrations and meteorological conditions. Atmos. Environ. 2002, 36, 4211–4222. [Google Scholar] [CrossRef]
- Jana, P.K.; Goswami, S.; Midya, S.M. Short-term tropospheric ozone trend in India. Indian J. Phys. 2012, 86, 951–960. [Google Scholar] [CrossRef]
- Zhang, J.; Chao, W.; Qu, K.; Ding, J.W.; Shang, Y.Q.; Liu, H.F.; Wei, M. Characteristics of Ozone Pollution, Regional Distribution and Causes during 2014–2018 in Shandong Province, East China. Atmosphere 2019, 10, 501. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; He, F.; Tie, X.; Xu, J.; Gao, W. Meteorology driving the highest ozone level occurred during mid-spring to early summer in Shanghai, China. Sci. Total Environ. 2021, 785, 147253. [Google Scholar] [CrossRef]
- Mao, M.J.; Liu, H.T.; Du, R.G. Characteristics and control Factors of Ozone Pollution at Different Time Scales in Hangzhou City. Res. Environ. Sci. 2019, 32, 1844–1851. [Google Scholar]
- Tang, G.; Wang, Y.; Li, X.; Ji, D.; Hsu, S.; Gao, X. Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmos. Chem. Phys. 2012, 12, 2757–2776. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Sahu, L.K.; Jaaffrey, S.N.A.; Beig, G. Distributions of ozone and related trace gases at an urban site in western India. J. Atmos. Chem. 2014, 71, 125–144. [Google Scholar] [CrossRef]
- Jin, Z.; Qian, L.; Shi, Y.; Fu, G.; Li, G.; Li, F. Quantifying major NOx sources of aerosol nitrate in Hangzhou, China, by using stable isotopes and a Bayesian isotope mixing model. Atmos. Environ. 2021, 244, 117979. [Google Scholar] [CrossRef]
- Bukhlova, G.V.; Krasnenko, N.P.; Stafeev, P.G. Dynamics of the thermal structure of the lower atmosphere above Tomsk from the data of acoustic sounding. IOP Conf. Ser. Earth Environ. Sci. 2008, 1, 012057. [Google Scholar] [CrossRef]
- Yuan, Q.; Qi, B.; Hu, D.; Wang, J.; Zhang, J.; Yang, H.; Zhang, S.; Liu, L.; Xu, L.; Li, W. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 2021, 751, 141820. [Google Scholar] [CrossRef] [PubMed]
- NASA. Airborne Nitrogen Dioxide Plummets Over China. 2002. Available online: https://earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china (accessed on 23 January 2022).
- Liu, L.; Zhang, J.; Du, R.; Teng, X.; Hu, R.; Yuan, Q.; Tang, S.; Ren, C.; Huang, X.; Xu, L.; et al. Chemistry of Atmospheric Fine Particles during the COVID-19 Pandemic in a Megacity of Eastern China. Geophys. Res. Lett. 2021, 48, e2020GL091611. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Luo, K.; Fan, J. Decoding Tropospheric Ozone in Hangzhou, China: From Precursors to Sources. Asia Pac. J. Atmos. Sci. 2020, 56, 321–331. [Google Scholar] [CrossRef]
- Li, L.; An, J.; Shi, Y.; Zhou, M.; Yan, R.; Huang, C.; Wang, H.; Lou, S.; Wang, Q.; Lu, Q.; et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 2016, 144, 194–207. [Google Scholar] [CrossRef]
- Londhe, A.; Jadhav, D.; Buchunde, P.; Kartha, M.J. Surface ozone variability in the urban and nearby rural locations of tropical India. Curr. Sci. 2008, 95, 1724–1729. [Google Scholar]
- Meng, Z.; Dabdub, D.; Seinfeld, J. Chemical coupling between atmospheric ozone and particulate matter. Science 1997, 277, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Knipping, M.E.; Dabdub, D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Sci. Technol. 2003, 37, 275–284. [Google Scholar] [CrossRef]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921–933. [Google Scholar] [CrossRef]
- Ji, Y.; Qin, X.; Wang, B.; Xu, J.; Shen, J.; Chen, J.; Huang, K.; Deng, C.; Yan, R.; Xu, K.; et al. Counteractive effects of regional transport and emission control on the formation of fine particles: A case study during the Hangzhou G20 summit. Atmos. Chem. Phys. 2018, 18, 13581–13600. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, Z.; He, T.; Meng, X.; Xie, S.; Yu, H. Driving factors of the significant increase in surface ozone in the Yangtze River Delta, China, during 2013–2017. Atmos. Pollut. Res. 2019, 10, 1357–1364. [Google Scholar] [CrossRef]
- Wang, W.J.; David, D.P.; Wang, S.W.; Bao, F.X.; Ni, R.J.; Li, R.J.; Li, X.; Yang, S.D.; Wang, H.L.; Cheng, Y.F. Long-term trend of ozone pollution in China during 2014–2020: Distinct seasonal and spatial characteristics and ozone sensitivity. Atmos. Chem. Phys. 2022, 22, 8935–8949. [Google Scholar] [CrossRef]
Season | Cluster | Percentage (%) | Average O3 Mixing Ratio (ppb) |
---|---|---|---|
Winter | 1 | 34.49 | 17.23 ± 0.66 |
2 | 31.84 | 12.97 ± 0.52 | |
3 | 19.99 | 7.98 ± 0.72 | |
4 | 13.69 | 11.79 ± 0.89 | |
Spring | 1 | 18.55 | 28.47 ± 1.25 |
2 | 33.97 | 29.01 ± 1.16 | |
3 | 27.54 | 26.52 ± 1.15 | |
4 | 19.94 | 34.14 ± 1.42 | |
Summer | 1 | 32.74 | 21.11 ± 1.12 |
2 | 41.57 | 24.44 ± 0.92 | |
3 | 18.01 | 20.67 ± 1.21 | |
4 | 7.68 | 29.01 ± 2.69 | |
Autumn | 1 | 24.40 | 21.83 ± 1.24 |
2 | 23.96 | 26.86 ± 0.97 | |
3 | 38.04 | 25.73 ± 0.87 | |
4 | 13.59 | 24.87 ± 1.40 |
Year | NOx (ppb) | O3 (ppb) |
---|---|---|
2015 | 30.63 ± 2.56 | 18.60 ± 1.90 |
2016 | 24.82 ± 1.82 | 20.46 ± 2.80 |
2017 | 27.48 ± 2.45 | 24.87 ± 2.54 |
2018 | 24.47 ± 2.41 | 20.77 ± 4.19 |
2019 | 25.77 ± 1.53 | 21.78 ± 2.77 |
2020 | 22.70 ± 2.69 | 23.84 ± 1.72 |
2021 | 18.18 ± 1.52 | 23.73 ± 1.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Du, R.; Tang, G.; Zang, K.; Lin, Y.; Chen, Y.; Qing, X.; Li, J.; Xiong, H.; Jiang, K.; et al. Characteristics of Surface Ozone and Nitrogen Oxides over a Typical City in the Yangtze River Delta, China. Atmosphere 2023, 14, 487. https://doi.org/10.3390/atmos14030487
Qiu S, Du R, Tang G, Zang K, Lin Y, Chen Y, Qing X, Li J, Xiong H, Jiang K, et al. Characteristics of Surface Ozone and Nitrogen Oxides over a Typical City in the Yangtze River Delta, China. Atmosphere. 2023; 14(3):487. https://doi.org/10.3390/atmos14030487
Chicago/Turabian StyleQiu, Shanshan, Rongguang Du, Guangtian Tang, Kunpeng Zang, Yi Lin, Yuanyuan Chen, Xuemei Qing, Jiaxin Li, Haoyu Xiong, Kai Jiang, and et al. 2023. "Characteristics of Surface Ozone and Nitrogen Oxides over a Typical City in the Yangtze River Delta, China" Atmosphere 14, no. 3: 487. https://doi.org/10.3390/atmos14030487
APA StyleQiu, S., Du, R., Tang, G., Zang, K., Lin, Y., Chen, Y., Qing, X., Li, J., Xiong, H., Jiang, K., Hong, H., & Fang, S. (2023). Characteristics of Surface Ozone and Nitrogen Oxides over a Typical City in the Yangtze River Delta, China. Atmosphere, 14(3), 487. https://doi.org/10.3390/atmos14030487