Deposition of Potassium on Chimney Wall from Wood Stove Smoke: Implication for the Influence of Domestic Biomass Burning on Atmospheric Aerosols
Abstract
:1. Introduction
2. Samples and Methods
3. Results and Discussion
3.1. TC, TN, WSOC and WSTN
3.2. Major Ions and Levoglucosan
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef] [Green Version]
- Puxbaum, H.; Caseiro, A.; Sánchez-Ochoa, A.; Kasper-Giebl, A.; Claeys, M.; Gelencsér, A.; Legrand, M.; Preunkert, S.; Pio, C. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J. Geophys. Res.-Atmos. 2007, 112, 11. [Google Scholar] [CrossRef] [Green Version]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., III; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A. Model calculated global, regional and megacity premature mortality due to air pollution. Atmos. Chem. Phys. 2013, 13, 7023–7037. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Wang, X.M.; Xie, Z.Q.; Zhang, Z.; Sun, L.G. Impacts of Siberian Biomass Burning on Organic Aerosols over the North Pacific Ocean and the Arctic: Primary and Secondary Organic Tracers. Environ. Sci. Technol. 2013, 47, 3149–3157. [Google Scholar] [CrossRef]
- Pachon, J.E.; Weber, R.J.; Zhang, X.L.; Mulholland, J.A.; Russell, A.G. Revising the use of potassium (K) in the source apportionment of PM2.5. Atmos. Pollut. Res. 2013, 4, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Urban, R.C.; Lima-Souza, M.; Caetano-Silva, L.; Queiroz, M.E.C.; Nogueira, R.F.P.; Allen, A.G.; Cardoso, A.A.; Held, G.; Campos, M.L.A.M. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmos. Environ. 2012, 61, 562–569. [Google Scholar] [CrossRef]
- Alves, C.; Goncalves, C.; Fernandes, A.P.; Tarelho, L.; Pio, C. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types. Atmos. Res. 2011, 101, 692–700. [Google Scholar] [CrossRef]
- Mkoma, S.L.; Kawamura, K.; Fu, P.Q. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos. Chem. Phys. 2013, 13, 10325–10338. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, T.; Kawamura, K.; Nakamura, S.; Kanaya, Y.; Wang, Z.F. Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes. Atmos. Environ. 2017, 171, 237–247. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Fu, P.Q.; Kawamura, K.; Chen, J.; Li, J.; Sun, Y.L.; Liu, Y.; Tachibana, E.; Aggarwal, S.G.; Okuzawa, K.; Tanimoto, H.; et al. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: An influence of biomass burning. Atmos. Chem. Phys. 2012, 12, 8359–8375. [Google Scholar] [CrossRef] [Green Version]
- Simoneit, B.R.T.; Kobayashi, M.; Mochida, M.; Kawamura, K.; Huebert, B.J. Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds. J. Geophys. Res.-Atmos. 2004, 109, 13. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, D.; Torri, C.; Simoneit, B.R.T.; Marynowski, L.; Rushdi, A.I.; Fabiańska, M.J. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos. Environ. 2009, 43, 2286–2295. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R.T. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 2000, 79, 515–536. [Google Scholar] [CrossRef]
- Wan, X.; Kang, S.; Li, Q.; Rupakheti, D.; Zhang, Q.; Guo, J.; Chen, P.; Tripathee, L.; Rupakheti, M.; Panday, A.K.; et al. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning. Atmos. Chem. Phys. 2017, 17, 8867–8885. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kawamura, K.; Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 2015, 15, 1959–1973. [Google Scholar] [CrossRef]
- Haque, M.M.; Kawamura, K.; Deshmukh, D.K.; Kunwar, B.; Kim, Y. Biomass Burning is an Important Source of Organic Aerosols in Interior Alaska. J. Geophys. Res.-Atmos. 2021, 126, 21. [Google Scholar] [CrossRef]
- Hegde, P.; Kawamura, K. Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India. Arch. Environ. Contam. Toxicol. 2017, 73, 456–473. [Google Scholar] [CrossRef]
- Vodicka, P.; Kawamura, K.; Schwarz, J.; Zdimal, V. Seasonal changes in stable carbon isotopic composition in the bulk aerosol and gas phases at a suburban site in Prague. Sci. Total Environ. 2022, 803, 13. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, D.K.; Kawamura, K.; Gupta, T.; Haque, M.M.; Zhang, Y.-L.; Sing, D.K.; Tsai, Y.I. High Loadings of Water-soluble Oxalic Acid and Related Compounds in PM2.5 Aerosols in Eastern Central India: Influence of Biomass Burning and Photochemical Processing. Aerosol Air Qual. Res. 2019, 19, 2625–2644. [Google Scholar] [CrossRef]
- Kunwar, B.; Torii, K.; Zhu, C.M.; Fu, P.Q.; Kawamura, K. Springtime variations of organic and inorganic constituents in submicron aerosols (PM1.0) from Cape Hedo, Okinawa. Atmos. Environ. 2016, 130, 84–94. [Google Scholar] [CrossRef]
- Fu, P.Q.; Kawamura, K.; Miura, K. Molecular characterization of marine organic aerosols collected during a round-the-world cruise. J. Geophys. Res.-Atmos. 2011, 116, 14. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Bikkina, S. A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmos. Res. 2016, 170, 140–160. [Google Scholar] [CrossRef]
- Pavuluri, C.M.; Kawamura, K.; Fu, P.Q. Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: Biological sources and secondary formation. Atmos. Chem. Phys. 2015, 15, 9883–9896. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.J.; Edebeli, J.; McNamara, S.M.; Kulju, K.D.; May, N.W.; Bertman, S.B.; Thanekar, S.; Fuentes, J.D.; Pratt, K.A. HONO, Particulate Nitrite, and Snow Nitrite at a Midlatitude Urban Site during Wintertime. ACS Earth Space Chem. 2019, 3, 811–822. [Google Scholar] [CrossRef]
- Hegde, P.; Kawamura, K.; Joshi, H.; Naja, M. Organic and inorganic components of aerosols over the central Himalayas: Winter and summer variations in stable carbon and nitrogen isotopic composition. Environ. Sci. Pollut. Res. 2016, 23, 6102–6118. [Google Scholar] [CrossRef]
- Cornut, I.; Le Maire, G.; Laclau, J.-P.; Guillemot, J.; Mareschal, L.; Nouvellon, Y.; Delpierre, N. Potassium limitation of wood productivity: A review of elementary processes and ways forward to modelling illustrated by Eucalyptus plantations. For. Ecol. Manag. 2021, 494, 119275. [Google Scholar] [CrossRef]
- Shoji, T.; Kawamoto, H.; Saka, S. Boiling point of levoglucosan and devolatilization temperatures in cellulose pyrolysis measured at different heating area temperatures. J. Anal. Appl. Pyrolysis 2014, 109, 185–195. [Google Scholar] [CrossRef]
- Sippula, O.; Hokkinen, J.; Puustinen, H.; Yli-Pirila, P.; Jokiniemi, J. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos. Environ. 2009, 43, 4855–4864. [Google Scholar] [CrossRef]
- Li, T.K.; Liu, B.; Bi, X.; Wu, J.; Zhang, Y.; Feng, Y. Size and chemical characteristics of particles emitted from typical rural biomass cookstoves in North China. Atmos. Res. 2021, 249, 9. [Google Scholar] [CrossRef]
- Paneru, M.; Babat, S.; Maier, J.; Scheffknecht, G. Role of potassium in deposit formation during wood pellets combustion. Fuel Process. Technol. 2016, 141, 266–275. [Google Scholar] [CrossRef]
- Ho, K.F.; Engling, G.; Sai Hang Ho, S.; Huang, R.; Lai, S.; Cao, J.; Lee, S.C. Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China. Tellus Ser. B-Chem. Phys. Meteorol. 2014, 66, 14. [Google Scholar] [CrossRef]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environ. Eng. Sci. 2004, 21, 705–721. [Google Scholar] [CrossRef]
Components | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|
TC (wt %) | 42.5 | 81.9 | 58.1 | 9.18 |
TN (wt %) | 1.38 | 6.14 | 3.58 | 1.75 |
WSOC (wt %) | 0.35 | 1.61 | 0.67 | 0.30 |
WSTN (wt %) | 0.03 | 0.66 | 0.19 | 0.20 |
WSOC/TC (%) | 0.53 | 2.87 | 1.18 | 0.57 |
WSTN/TN (%) | 1.76 | 11.0 | 4.55 | 2.75 |
Anions (mg/g) | ||||
F− | 0.05 | 0.24 | 0.10 | 0.05 |
MSA− | 0.24 | 16.4 | 4.18 | 4.61 |
Cl− | 0.08 | 0.97 | 0.34 | 0.29 |
NO2− | 0.00 | 2.75 | 0.35 | 0.74 |
Br− | 0.00 | 0.07 | 0.01 | 0.02 |
NO3− | 0.00 | 0.39 | 0.06 | 0.10 |
PO43− | 0.00 | 1.53 | 0.42 | 0.38 |
SO42− | 18.9 | 99.0 | 46.0 | 22.6 |
Total anions | 20.3 | 116 | 51.4 | 25.6 |
Cations (mg/g) | ||||
Na+ | 0.14 | 2.96 | 0.83 | 0.88 |
NH4+ | 0.00 | 7.87 | 1.46 | 2.38 |
K+ | 7.70 | 43.6 | 17.5 | 9.90 |
Ca2+ | 3.52 | 29.0 | 14.5 | 8.27 |
Mg2+ | 0.34 | 3.40 | 1.63 | 0.94 |
Total cations | 14.7 | 78.6 | 35.9 | 18.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawamura, K.; Kunwar, B.; Deshmukh, D.K.; Vodička, P.; Haque, M.M. Deposition of Potassium on Chimney Wall from Wood Stove Smoke: Implication for the Influence of Domestic Biomass Burning on Atmospheric Aerosols. Atmosphere 2023, 14, 484. https://doi.org/10.3390/atmos14030484
Kawamura K, Kunwar B, Deshmukh DK, Vodička P, Haque MM. Deposition of Potassium on Chimney Wall from Wood Stove Smoke: Implication for the Influence of Domestic Biomass Burning on Atmospheric Aerosols. Atmosphere. 2023; 14(3):484. https://doi.org/10.3390/atmos14030484
Chicago/Turabian StyleKawamura, Kimitaka, Bhagawati Kunwar, Dhananjay Kumar Deshmukh, Petr Vodička, and Md. Mozammel Haque. 2023. "Deposition of Potassium on Chimney Wall from Wood Stove Smoke: Implication for the Influence of Domestic Biomass Burning on Atmospheric Aerosols" Atmosphere 14, no. 3: 484. https://doi.org/10.3390/atmos14030484
APA StyleKawamura, K., Kunwar, B., Deshmukh, D. K., Vodička, P., & Haque, M. M. (2023). Deposition of Potassium on Chimney Wall from Wood Stove Smoke: Implication for the Influence of Domestic Biomass Burning on Atmospheric Aerosols. Atmosphere, 14(3), 484. https://doi.org/10.3390/atmos14030484