Race and Street-Level Firework Legalization as Primary Determinants of July 4th Air Pollution across Southern California
Abstract
:1. Introduction
2. Methods
2.1. Study Region
2.2. Field Sampling
2.3. PurpleAir Network PM2.5 Data
- Removal of malfunctioning sensor data based on a low frequency of change (5-day moving standard deviation of zero) in their reported measurements over time.
- The setting of PM2.5 outliers that exceed the sensor’s effective measurement range (daily values > 500 μg/m3) to 500 μg/m3.
- Identification of periods of prolonged interruption or data loss due to power outages or data communication loss using a 75% completeness criterion (≥108 10-min measurements in a day).
- Examination of the correlation from dual-channel readings for each sensor within a given month of operation based on calculated statistical anomality detection indicators as the coefficient of determination R2 > 0.8 and mean absolute error < 5.
2.4. Socioeconomic and Other Data
2.5. Santa Ana Statistical Analysis
2.6. Inter-City Statistical Analysis
3. Results
3.1. Santa Ana Analysis
3.2. Inter-City Analysis
4. Discussion
4.1. Santa Ana Analysis
4.2. Inter-City Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Winer, A.; Delfino, R. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires. Atmos. Environ. 2006, 40, 3333–3348. [Google Scholar] [CrossRef] [Green Version]
- Vedal, S.; Dutton, S.J. Wildfire air pollution and daily mortality in a large urban area. Environ. Res. 2006, 102, 29–35. [Google Scholar] [CrossRef]
- Lewis, T.C.; Robins, T.G.; Mentz, G.B.; Zhang, X.; Mukherjee, B.; Lin, X.; Keeler, G.J.; Dvonch, J.T.; Yip, F.Y.; O’Neill, M.S.; et al. Air pollution and respiratory symptoms among children with asthma: Vulnerability by corticosteroid use and residence area. Sci. Total Environ. 2013, 448, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meo, S.A.; Suraya, F. Effect of environmental air pollution. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4890–4897. [Google Scholar] [PubMed]
- Flies, E.J.; Mavoa, S.; Zosky, G.R.; Mantzioris, E.; Williams, C.; Eri, R.; Brook, B.W.; Buettel, J.C. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environ. Int. 2019, 133, 105187. [Google Scholar] [CrossRef]
- Pope, C.A.; Coleman, N.; Pond, Z.A.; Burnett, R.T. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ. Res. 2020, 183, 108924. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, J.; Cheng, Y.; Feng, L.; Wang, S.; Yun, X.; Tao, S. Urban-rural disparity in the relationship between ambient air pollution and preterm birth. Int. J. Health Geogr. 2020, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Hystad, P.; Larkin, A.; Rangarajan, S.; AlHabib, K.F.; Avezum, A.; Calik, K.B.T.; Chifamba, J.; Dans, A.; Diaz, R.; Du Plessis, J.L.; et al. Associations of outdoor fine particulate air pollution and cardiovascular disease in 157,436 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet Planet. Health 2020, 4, e235–e245. [Google Scholar] [CrossRef]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Zhang, Y.; Chen, H.; Sang, S. Global burden of COPD attributable to ambient PM2.5 in 204 countries and territories, 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Sci. Total Environ. 2021, 796, 148819. [Google Scholar] [CrossRef]
- Mikati, I.; Benson, A.F.; Luben, T.J.; Sacks, J.D.; Richmond-Bryant, J. Disparities in distribution of particulate matter emission sources by race and poverty status. Am. J. Public Health 2018, 108, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Morello-Frosch, R.; Pastor, M.; Porras, C.; Sadd, J. Environmental justice and regional inequality in Southern California: Implications for future research. Environ. Health Perspect. 2002, 110, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, J.; Zandbergen, P.A. Children at risk: Measuring racial/ethnic disparities in potential exposure to air pollution at school and home. J. Epidemiol. Community Health 2007, 61, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Gaffron, P.; Niemeier, D. School locations and traffic Emissions—Environmental (In)justice findings using a new screening method. Int. J. Environ. Res. Public Health 2015, 12, 2009–2025. [Google Scholar] [CrossRef] [Green Version]
- Mirabelli, M.C.; Wing, S.; Marshall, S.W.; Wilcosky, T.C. Race, poverty, and potential exposure of middle-school students to air emissions from confined swine feeding operations. Environ. Health Perspect. 2006, 114, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, M.; Sadd, J.L.; Morello-Frosch, R. Who’s minding the kids? Pollution, public schools, and environmental justice in Los Angeles. Soc. Sci. Q. 2002, 83, 263–280. [Google Scholar] [CrossRef]
- United Church of Christ Commission for Racial Justice. Toxic Waste and Race in The United States: A National Report on the Racial and Socio-Economic Characteristics of Communities with Hazardous Waste Sites. In Proceedings of the Commission for Racial Justice, New York, NY, USA, 1987. [Google Scholar]
- Collins, T.W.; Grineski, S.E.; Nadybal, S.M. A Comparative Approach for Environmental Justice Analysis: Explaining Divergent Societal Distributions of Particulate Matter and Ozone Pollution across U.S. Neighborhoods. Ann. Am. Assoc. Geogr. 2022, 112, 522–541. [Google Scholar] [CrossRef]
- Woo, B.; Kravitz-Wirtz, N.; Sass, V.; Crowder, K.; Teixeira, S.; Takeuchi, D.T. Residential Segregation and Racial/Ethnic Disparities in Ambient Air Pollution. Race Soc. Probl. 2019, 11, 60–67. [Google Scholar] [CrossRef]
- Tessum, C.W.; Paolella, D.A.; Chambliss, S.E.; Apte, J.S.; Hill, J.D.; Marshall, J.D. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Sci. Adv. 2021, 7, eabf4491. [Google Scholar] [CrossRef]
- Rosofsky, A.; Levy, J.I.; Zanobetti, A.; Janulewicz, P.; Fabian, M.P. Temporal trends in air pollution exposure inequality in Massachusetts. Environ. Res. 2018, 161, 76–86. [Google Scholar] [CrossRef]
- Dickerson, A.S.; Benson, A.F.; Buckley, B.; Chan, E.A.W. Concentrations of individual fine particulate matter components in the USA around July 4th. Air Qual. Atmos. Health 2017, 10, 349–358. [Google Scholar] [CrossRef]
- Greven, F.E.; Vonk, J.M.; Fischer, P.; Duijm, F.; Vink, N.M.; Brunekreef, B. Air pollution during New Year’s fireworks and daily mortality in the Netherlands. Sci. Rep. 2019, 9, 5735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickey, C.; Gordon, C.; Galdanes, K.; Blaustein, M.; Horton, L.; Chillrud, S.; Ross, J.; Yinon, L.; Chen, L.C.; Gordon, T. Toxicity of particles emitted by fireworks. Part. Fibre Toxicol. 2020, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- Joly, A.; Smargiassi, A.; Kosatsky, T.; Fournier, M.; Dabek-Zlotorzynska, E.; Celo, V.; Mathieu, D.; Servranckx, R.; D’Amours, R.; Malo, A.; et al. Characterisation of particulate exposure during fireworks displays. Atmos. Environ. 2010, 44, 4325–4329. [Google Scholar] [CrossRef]
- Seidel, D.J.; Birnbaum, A.N. Effects of Independence Day fireworks on atmospheric concentrations offine particulate matter in the United States. Atmos. Environ. 2015, 115, 192–198. [Google Scholar] [CrossRef]
- Yao, L.; Wang, D.; Fu, Q.; Qiao, L.; Wang, H.; Li, L.; Sun, W.; Li, Q.; Wang, L.; Yang, X.; et al. The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity. Environ. Int. 2019, 126, 96–106. [Google Scholar] [CrossRef]
- Lin, C.C. A review of the impact of fireworks on particulate matter in ambient air. J. Air Waste Manag. Assoc. 2016, 66, 1171–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masri, S.; Kang, C.-M.; Koutrakis, P. Composition and sources of fine and coarse particles collected during 2002–2010 in Boston, MA. J. Air Waste Manag. Assoc. 2015, 65, 287–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Singh, R.; Murari, V.; Banerjee, T. Fireworks induced particle pollution: A spatio-temporal analysis. Atmos. Res. 2016, 180, 78–91. [Google Scholar] [CrossRef]
- Yadav, S.K.; Kumar, M.; Sharma, Y.; Shukla, P.; Singh, R.S.; Banerjee, T. Temporal evolution of submicron particles during extreme fireworks. Environ. Monit. Assess. 2019, 191, 576. [Google Scholar] [CrossRef] [PubMed]
- Xuechen, Z.; Shen, H.; Li, T. Effect characteristics of Chinese New Year fireworks/firecrackers on PM2.5 concentration at large space and time scales. In Proceedings of the 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 179–182. [Google Scholar] [CrossRef]
- Vecchi, R.; Bernardoni, V.; Cricchio, D.; D’Alessandro, A.; Fermo, P.; Lucarelli, F.; Nava, S.; Piazzalunga, A.; Valli, G. The impact of fireworks on airborne particles. Atmos. Environ. 2008, 42, 1121–1132. [Google Scholar] [CrossRef]
- Drewnick, F.; Hings, S.S.; Curtius, J.; Eerdekens, G.; Williams, J. Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmos. Environ. 2006, 40, 4316–4327. [Google Scholar] [CrossRef]
- Mousavi, A.; Yuan, Y.; Masri, S.; Barta, G.; Wu, J. Impact of 4th of july fireworks on spatiotemporal pm2.5 concentrations in california based on the purpleair sensor network: Implications for policy and environmental justice. Int. J. Environ. Res. Public Health 2021, 18, 5735. [Google Scholar] [CrossRef]
- Bi, J.; Stowell, J.; Seto, E.Y.; English, P.B.; Al-Hamdan, M.Z.; Kinney, P.L.; Freedman, F.R.; Liu, Y. Contribution of low-cost sensor measurements to the prediction of PM2.5levels, A case study in Imperial County, California, USA. Environ. Res. 2020, 180, 108810. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Pope, F.D.; Gatari, M.; Ng’ang’a, D.; Poynter, A.; Blake, R. Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors. Atmos. Chem. Phys. 2018, 18, 15403–15418. [Google Scholar] [CrossRef] [Green Version]
- Larkin, A.; Hystad, P. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research. Curr. Environ. Health Rep. 2017, 4, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Delp, W.W.; Singer, B.C. Wildfire Smoke Adjustment Factors for Low-Cost and Professional PM 2.5 Monitors with Optical Sensors. Sensors 2020, 20, 3683. [Google Scholar] [CrossRef]
- Holm, S.M.; Miller, M.D.; Balmes, J.R. Health effects of wildfire smoke in children and public health tools: A narrative review. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 1–20. [Google Scholar] [CrossRef]
- Zagozewski, R.; Judd-Henrey, I.; Nilson, S.; Bharadwaj, L. Perspectives on past and Present Waste Disposal Practices: A community-Based Participatory Research Project in Three Saskatchewan First Nations Communities. Environ. Health Insights 2011, 5, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, P.A.; Minkler, M.; Garcia, A.P.; Gordon, M.; Garzón, C.; Palaniappan, M.; Prakash, S.; Beveridge, B. Community-based participatory research and policy advocacy to reduce diesel exposure in West Oakland, California. Am. J. Public Health 2011, 101, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.P.; Minkler, M.; Cardenas, Z.; Grills, C.; Porter, C. Engaging Homeless Youth in Community-Based Participatory Research: A Case Study from Skid Row, Los Angeles. Health Promot. Pract. 2014, 15, 18–27. [Google Scholar] [CrossRef]
- Masri, S.; LeBrón, A.; Logue, M.; Valencia, E.; Ruiz, A.; Reyes, A.; Lawrence, J.M.; Wu, J. Social and spatial distribution of soil lead concentrations in the City of Santa Ana, California: Implications for health inequities. Sci. Total Environ. 2020, 743, 140764. [Google Scholar] [CrossRef] [PubMed]
- Residents in ‘limbo’ as regulators delay cleaning any lead-tainted homes near Exide battery plant. The Los Angeles Times, 2016; p. 1.
- Masri, S.; Rea, J.; Wu, J. Use of Low-Cost Sensors to Characterize Occupational Exposure to PM2.5 Concentrations Inside an Industrial Facility in Santa Ana, CA: Results from a Worker-and Community-Led Pilot Study. Atmosphere 2022, 13, 722. [Google Scholar] [CrossRef]
- U.S. Census Bureau. QuickFacts: Santa Ana, California. Available online: https://www.census.gov/quickfacts/fact/table/santaanacitycalifornia,orangecitycalifornia/PST045221 (accessed on 15 December 2022).
- The City of Santa Ana. Santa Ana Facts and Figures. Library Services. Available online: https://www.santa-ana.org/library/services/facts-and-figures (accessed on 15 December 2022).
- United States Census Bureau. Explore Census Data. Available online: https://data.census.gov/ (accessed on 15 December 2022).
- South Coast Air Quailty Management District (SCAQMD): Air Quality Sensor Performance Evaluation Center. Field Evaluation Atmotube Pro. Available online: https://www.aqmd.gov/aq-spec/sensordetail/atmotube---pro (accessed on 15 December 2022).
- South Coast Air Quality Management District (SCAQMD). Field Evaluation of AtmoTube Pro VOC Sensor. 2021. Available online: http://www.aqmd.gov/docs/default-source/compliance/all-american-asphalt/atmotube-pro-voc-field-eval_final_v2.pdf?sfvrsn=4 (accessed on 15 December 2022).
- AtmoTube. How Does Atmotube PM Sensor Work? AtmoTube. Available online: https://help.atmotube.com/technical/3-atmotube-pm/ (accessed on 15 December 2022).
- Ardon-dryer, K.; Dryer, Y.; Williams, J.N.; Moghimi, N. Measurements of PM 2.5 with PurpleAir under atmospheric conditions. Atmos. Meas. Tech. 2020, 13, 5441–5458. [Google Scholar] [CrossRef]
- Air Quality Sensor Performance Evaluation Center (AQ-SPEC). South Coast Air Quality Management District (AQMD). Evaluation Summary Purple Air PM Sensor. 2017. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/summary/purpleair-pa-ii---summary-report.pdf?sfvrsn=16 (accessed on 15 December 2022).
- Air Quality Sensor Performance Evaluation Center (AQ-SPEC). South Coast Air Quality Management District (AQMD). Field Evaluation Purple Air PM Sensor. 2017. Available online: https://www.aqmd.gov/aq-spec/product/purpleair-pa-ii (accessed on 15 December 2022).
- Stavroulas, I.; Grivas, G.; Michalopoulos, P.; Liakakou, E.; Bougiatioti, A.; Kalkavouras, P.; Fameli, K.; Hatzianastassiou, N.; Mihalopoulos, N.; Gerasopoulos, E. Field Evaluation of Low-Cost PM Sensors (Purple Air PA-II) under Variable Urban Air Quality Conditions, in Greece. Atmosphere 2020, 11, 926. [Google Scholar] [CrossRef]
- Bi, J.; Wildani, A.; Chang, H.H.; Liu, Y. Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale. Environ. Sci. Technol. 2020, 54, 2152–2162. [Google Scholar] [CrossRef]
- PurpleAir. PurpleAir Map. 2023. Available online: https://map.purpleair.com/1/m/i/lb/mAQI/a10/p31536000/cC0#11.62/33.6427/-117.8235 (accessed on 15 December 2022).
- Mousavi, A.; Wu, J. Indoor-Generated PM2.5 during COVID-19 Shutdowns across California: Application of the PurpleAir Indoor-Outdoor Low-Cost Sensor Network. Environ. Sci. Technol. 2021, 55, 5648–5656. [Google Scholar] [CrossRef]
- Lu, Y.; Giuliano, G.; Habre, R. Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study. Environ. Res. 2021, 195, 110653. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS® 9.4 Statements: Reference, 3rd ed.; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Hasheminassab, S.; Sowlat, M.H.; Pakbin, P.; Katzenstein, A.; Low, J.; Polidori, A. High time-resolution and time-integrated measurements of particulate metals and elements in an environmental justice community within the Los Angeles Basin: Spatio-temporal trends and source apportionment. Atmos. Environ. X 2020, 7, 100089. [Google Scholar] [CrossRef]
- City News Service. Southern California Fireworks Brought Serious Air Pollution, Worst of Any July 4 in Past Decade. 2020. Desert Sun. Available online: https://www.desertsun.com/story/news/2020/07/09/illegal-fireworks-brought-bad-july-4-southern-california-air-pollution/5407174002/ (accessed on 15 December 2022).
- City News Service. 4th of July Fireworks Resulted in Worst Air Quality in a Decade for SoCal. NBC Los Angeles. Available online: https://www.nbclosangeles.com/news/local/4th-of-july-fireworks-resulted-in-worst-air-quality-in-a-decade-for-socal/2393184/#:~:text=The%20use%20of%20legal%20and,Quality%20Management%20District%20reported%20Wednesday (accessed on 8 July 2020).
- Southern California Fireworks Brought Spike in Air Pollution. AP News. Available online: https://apnews.com/article/04fed3bb14504e6ed50e35f0fbf11d29 (accessed on 9 July 2020).
- Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Phaneuf, D.J.; Barrett, M.A.; Su, J.G. Short-term impact of PM2.5 on contemporaneous asthma medication use: Behavior and the value of pollution reductions. Proc. Natl. Acad. Sci. USA 2019, 116, 5246–5253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waibel, M.; Keays, B.; Augugliaro, F. Drone Shows: Creative Potential And Best Practices; ETH Zurich: Zurich, Switzerland, 2017. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air Pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
Indoor PM2.5 / Outdoor PM2.5 | |||||
---|---|---|---|---|---|
Mean | S.D. | Median | Min. | Max. | |
AtmoTube (Santa Ana) | |||||
Baseline | 0.91 | 0.31 | 0.91 | 0.71 | 1.9 |
Co-Located Average (n = 10) | 0.77 | 0.34 | 0.77 | 0.36 | 1.4 |
ALL (n = 113) | Los Angeles (n = 60) | Orange (n = 24) | Riverside (n = 11) | San Bernardino (n = 18) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E.E. | p-Value | E.E. | p-Value | E.E. | p-Value | E.E. | p-Value | E.E. | p-Value | |
Intercept | 0.33 | 0.95 | 63.3 | <0.01 | 55.3 | <0.01 | −6.7 | 0.50 | −1.85 | 0.67 |
% < Age 18 | 0.39 | 0.74 | ||||||||
% White (non-Hispanic) | −0.54 | <0.01 | −0.63 | <0.01 | ||||||
% Hispanic | 0.45 | 0.049 | ||||||||
% Foreign Born | 1.30 | <0.01 | 0.46 | 0.55 | ||||||
Per Capita Income | 0.0 | 0.18 | 0.0 | 0.19 | 0.0 | 0.30 | 0.0 | 0.63 | ||
Median Home Value | 0.0 | 0.90 | ||||||||
% College Educated | 0.73 | 0.10 | −0.61 | 0.11 | ||||||
% High School Educated | 0.32 | 0.39 | ||||||||
Population Density | 0.0 | 0.67 | 0.0 | 0.54 | 0.0 | 0.82 | 0.01 | <0.01 |
Indoor PM2.5 / Outdoor PM2.5 | |||||
---|---|---|---|---|---|
Mean | S.D. | Median | Min. | Max. | |
PurpleAir (Southern California) | |||||
Baseline | 0.63 | 0.72 | 0.47 | 0.14 | 5.2 |
Inter-City average (n = 57) | 0.61 | 0.45 | 0.48 | 0.10 | 2.3 |
Baseline | 0.56 | 0.61 | 0.47 | 0.05 | 4.9 |
Co-Located average (n = 90) | 0.56 | 0.50 | 0.49 | 0.04 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masri, S.; Flores, L.; Rea, J.; Wu, J. Race and Street-Level Firework Legalization as Primary Determinants of July 4th Air Pollution across Southern California. Atmosphere 2023, 14, 401. https://doi.org/10.3390/atmos14020401
Masri S, Flores L, Rea J, Wu J. Race and Street-Level Firework Legalization as Primary Determinants of July 4th Air Pollution across Southern California. Atmosphere. 2023; 14(2):401. https://doi.org/10.3390/atmos14020401
Chicago/Turabian StyleMasri, Shahir, Leonel Flores, Jose Rea, and Jun Wu. 2023. "Race and Street-Level Firework Legalization as Primary Determinants of July 4th Air Pollution across Southern California" Atmosphere 14, no. 2: 401. https://doi.org/10.3390/atmos14020401
APA StyleMasri, S., Flores, L., Rea, J., & Wu, J. (2023). Race and Street-Level Firework Legalization as Primary Determinants of July 4th Air Pollution across Southern California. Atmosphere, 14(2), 401. https://doi.org/10.3390/atmos14020401