Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.2. Data Screening, Processing, and Statistical Analysis
2.3. Source Apportionment
3. Results and Discussion
3.1. General Statistics of PM2.5, BC, BrCs, and Element Concentrations
3.2. Cross Correlation among PM2.5, BC, BrCs, and PM2.5-Bound Elements
3.3. Diurnal Variations in Individual Species
3.4. Associations between Pollutant Concentrations and Wind Direction
3.5. Source Apportionment of BC, BrCs, and PM2.5-Bound Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tucker, W. An overview of PM2.5 sources and control strategies. Fuel Process. Technol. 2000, 65–66, 379–392. [Google Scholar] [CrossRef]
- Sofowote, U.M.; Su, Y.; Dabek-Zlotorzynska, E.; Rastogi, A.K.; Brook, J.; Hopke, P.K. Sources and temporal variations of constrained PMF factors obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada. Atmos. Environ. 2015, 108, 140–150. [Google Scholar] [CrossRef]
- Healy, R.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J.; Hilker, N.; Evans, G.; Doerksen, G.; et al. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmos. Environ. 2017, 161, 34–47. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Traub, A.; Huang, A.; Hilker, N.; Wang, J.M.; Herod, D.; Dabek-Zlotorzynska, E.; Celo, V.; Evans, G.J. Long-term analysis of PM2.5 from 2004 to 2017 in Toronto: Composition, sources, and oxidative potential. Environ. Pollut. 2020, 263, 114652. [Google Scholar] [CrossRef]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Baan, R.; Mattock, H.; Straif, K.; International Agency for Research on Cancer Monograph Working Group IARC. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262. [Google Scholar] [CrossRef]
- Health Canada (HC). Canadian Health Science Assessment for Fine Particulate Matter (PM2.5); Health Canada: Ottawa, ON, Canada, 2022; ISBN 978-0-660-41742-4.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). Air Quality in Ontario 2019 Report. 2020. Available online: https://www.ontario.ca/document/air-quality-ontario-2019-report (accessed on 14 October 2022).
- Dabek-Zlotorzynska, E.; Dann, T.F.; Martinelango, P.K.; Celo, V.; Brook, J.R.; Mathieu, D.; Ding, L.; Austin, C.C. Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: Methodology and PM2.5 chemical composition for the years 2003–2008. Atmos. Environ. 2011, 45, 673–686. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC). National Air Pollution Surveillance (NAPS) Program. 2022. Available online: https://data-donnees.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/ProgramInformation-InformationProgramme/?lang=en. (accessed on 3 February 2022).
- Lyamani, H.; Olmo, F.J.; Alados-Arboledas, L. Physical and optical properties of aerosols over an urban location in Spain: Seasonal and diurnal variability. Atmos. Meas. Tech. 2010, 10, 239–254. [Google Scholar] [CrossRef]
- Sofowote, U.M.; Healy, R.M.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Jeong, C.-H.; Wang, J.M.; Hilker, N.; Evans, G.J.; et al. Understanding the PM2.5 imbalance between a far and near-road location: Results of high temporal frequency source apportionment and parameterization of black carbon. Atmos. Environ. 2018, 173, 277–288. [Google Scholar] [CrossRef]
- Su, Y.; Sofowote, U.; Debosz, J.; White, L.; Munoz, A. Multi-year continuous PM2.5 measurements with the Federal Equivalent Method SHARP 5030 and comparisons to filter based and TEOM measurements in Ontario, Canada. Atmosphere 2018, 9, 191. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. 2014. Available online: https://www.epa.gov/sites/default/files/2015-02/documents/pmf_5.0_user_guide.pdf (accessed on 14 October 2022).
- United States Department of Transpiration (USDT). Ambassador Bridge Crossing Summary. 2020. Available online: https://ops.fhwa.dot.gov/freight/freight_analysis/ambass_brdg/ambass_brdge_ovrvw.htm (accessed on 14 October 2022).
- Buffalo and Fort Erie Public Bridge Authority (BFEPBA), 2018 Traffic Statistics Issued by the Bridge and Tunnel Operators Association (BTOA). 2019. Available online: https://www.peacebridge.com/index.php/media-room/press-releases-advisories/381-btoa-2018-stats (accessed on 14 October 2022).
- United States Environmental Protection Agency (US EPA). United States Files Complaint Against EES Coke in River Rouge, Michigan, for Clean Air Act Violations. 2022. Available online: https://www.epa.gov/newsreleases/united-states-files-complaint-against-ees-coke-river-rouge-michigan-clean-air-act (accessed on 14 October 2022).
- Jin, Q.; Liu, Y.; Feng, M.; Huang, C. High-resolution temporal metallic elements in PM2.5 in Chengdu, Southwest China: Variations, extreme events, and effects of meteorological parameters. Air Qual. Atmosphere Health 2021, 14, 1893–1909. [Google Scholar] [CrossRef]
- National Pollutant Release Inventory (NPRI). National Pollutant Release Inventory Data Search. 2022. Available online: https://pollution-waste.canada.ca/national-release-inventory/ (accessed on 14 October 2022).
- National Emissions Inventory (NEI). 2017 National Emissions Inventory (NEI) Data. 2017. Available online: https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data (accessed on 14 October 2022).
- Environmental Systems Research Institute (ESRI). Heat Map Symbology. 2023. Available online: https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/heat-map.htm (accessed on 2 February 2022).
- Hedberg, E.; Gidhagen, L.; Johansson, C. Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos. Environ. 2005, 39, 549–561. [Google Scholar] [CrossRef]
- Pekey, H.; Karakaş, D.; Bakoglu, M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 2004, 49, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Chan, C.K.; Paatero, P. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos. Environ. 1999, 33, 3201–3212. [Google Scholar] [CrossRef]
- Shin, S.M.; Kim, J.Y.; Lee, J.Y.; Kim, D.S.; Kim, Y.P. Enhancement of modeling performance by including organic markers to the PMF modeling for the PM2.5 at Seoul. Air Qual. Atmos. Health 2022, 15, 91–104. [Google Scholar]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-term trends in concentrations and sources of PM2.5-bound metals and elements in central Los Angeles. Atmos. Environ. 2021, 253, 118361. [Google Scholar] [CrossRef]
- Peralta, O.; Ortínez-Alvarez, A.; Basaldud, R.; Santiago, N.; Alvarez-Ospina, H.; de la Cruz, K.; Barrera, V.; de la Luz Espinosa, M.; Saavedra, I.; Castro, T.; et al. Atmospheric black carbon concentrations in Mexico. Atmos. Res. 2019, 230, 104626. [Google Scholar] [CrossRef]
- Anastasopolos, A.T.; Hopke, P.K.; Sofowote, U.M.; Zhang, J.J.; Johnson, M. Local and regional sources of urban ambient PM2.5 exposures in Calgary, Canada. Atmos. Environ. 2022, 290, 119383. [Google Scholar] [CrossRef]
- Nayebare, S.R.; Aburizaiza, O.S.; Siddique, A.; Carpenter, D.O.; Hussain, M.M.; Zeb, J.; Aburiziza, A.J.; Khwaja, H.A. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF). Environ. Pollut. 2018, 243, 1791–1801. [Google Scholar] [CrossRef]
- Al Mamun, A.; Celo, V.; Dabek-Zlotorzynska, E.; Charland, J.-P.; Cheng, I.; Zhang, L. Characterization and source apportionment of airborne particulate elements in the Athabasca oil sands region. Sci. Total. Environ. 2021, 788, 147748. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Liu, Q.; Qi, X.; Qu, J.; Zhang, S.; Wang, X.; Jia, K.; Zhu, M. Study on chemical components and sources of PM2.5 during heavy air pollution periods at a suburban site in Beijing of China. Atmos. Pollut. Res. 2021, 12, 188–199. [Google Scholar] [CrossRef]
- Yu, Y.; He, S.; Wu, X.; Zhang, C.; Yao, Y.; Liao, H.; Wang, Q.; Xie, M. PM2.5 elements at an urban site in Yangtze River Delta, China: High time-resolved measurement and the application in source apportionment. Environ. Pollut. 2019, 253, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Ontario Ministry of the Environment, Conservation and Parks (MECP). Ontario’s Ambient Air Quality Criteria. 2019. Available online: https://www.ontario.ca/page/ontarios-ambient-air-quality-criteria (accessed on 14 October 2022).
- Morawska, L.; Thomas, S.; Bofinger, N.; Wainwright, D.; Neale, D. Comprehensive characterization of aerosols in a subtropical urban atmosphere: Particle size distribution and correlation with gaseous pollutants. Atmos. Environ. 1998, 32, 2467–2478. [Google Scholar] [CrossRef]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227, 9–17. [Google Scholar] [CrossRef]
- Cyrys, J.; Stölzel, M.; Heinrich, J.; Kreyling, W.G.; Menzel, N.; Wittmaack, K.; Tuch, T.; Wichmann, H.E. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci. Total Environ. 2003, 305, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Huang, J.; Lu, S.; Li, X.; Yan, J.; Cen, K. A review on black carbon emissions, worldwide and in China. Chemosphere 2014, 107, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Kotchenruther, R.A. The effects of marine vessel fuel sulfur regulations on ambient PM2.5 at coastal and near coastal monitoring sites in the U.S. Atmos. Environ. 2017, 151, 52–61. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef]
- Yassin, M.F.; Al-Shatti, L.A.; Al Rashidi, M.S. Assessment of the atmospheric mixing layer height and its effects on pollutant dispersion. Environ. Monit. Assess. 2018, 190, 372. [Google Scholar] [CrossRef]
- Retama, A.; Baumgardner, D.; Raga, G.B.; McMeeking, G.R.; Walker, J.W. Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City. Atmos. Meas. Tech. 2015, 15, 9693–9709. [Google Scholar] [CrossRef]
- Chen, R.; Jia, B.; Tian, Y.; Feng, Y. Source-specific health risk assessment of PM2.5-bound heavy metals based on high time-resolved measurement in a Chinese megacity: Insights into seasonal and diurnal variations. Ecotoxicol. Environ. Saf. 2021, 216, 112167. [Google Scholar] [CrossRef]
- Hasheminassab, S.; Sowlat, M.H.; Pakbin, P.; Katzenstein, A.; Low, J.; Polidori, A. High time-resolution and time-integrated measurements of particulate metals and elements in an environmental justice community within the Los Angeles Basin: Spatio-temporal trends and source apportionment. Atmos. Environ. X 2020, 7, 100089. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, H.; Luo, L.; Liu, H.; Wu, B.; Liu, S.; Bai, X.; Liu, W.; Liu, X.; Wu, Y.; et al. Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018–2019. Environ. Pollut. 2021, 268, 115856. [Google Scholar] [CrossRef]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.; Su, Y. Impacts of Regional Transport and Meteorology on Ground-Level Ozone in Windsor, Canada. Atmosphere 2020, 11, 1111. [Google Scholar] [CrossRef]
- McGuire, M.L.; Chang, R.Y.-W.; Slowik, J.G.; Jeong, C.-H.; Healy, R.M.; Lu, G.; Mihele, C.; Abbatt, J.P.D.; Brook, J.R.; Evans, G.J. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra. Atmos. Meas. Tech. 2014, 14, 8017–8042. [Google Scholar] [CrossRef]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Hao, Y.; Meng, X.; Yu, X.; Lei, M.; Li, W.; Shi, F.; Yang, W.; Zhang, S.; Xie, S. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmos. Res. 2018, 213, 550–561. [Google Scholar] [CrossRef]
- Chi, R.; Li, H.; Wang, Q.; Zhai, Q.; Wang, D.; Wu, M.; Liu, Q.; Wu, S.; Ma, Q.; Deng, F.; et al. Association of emergency room visits for respiratory diseases with sources of ambient PM2.5. J. Environ. Sci. 2019, 86, 154–163. [Google Scholar] [CrossRef]
- Sugiyama, T.; Shimada, K.; Miura, K.; Lin, N.-H.; Kim, Y.P.; Chan, C.K.; Takami, A.; Hatakeyama, S. Measurement of Ambient PAHs in Kumamoto: Differentiating Local and Transboundary Air Pollution. Aerosol Air Qual. Res. 2017, 17, 3106–3118. [Google Scholar] [CrossRef]
- Ontario Environment and Energy (OEE). The End of Coal. 2021. Available online: https://www.ontario.ca/page/end-coal (accessed on 14 October 2022).
- United States Energy Information Administration (USEIA). Michigan State Energy Profile. 2022. Available online: https://www.eia.gov/state/print.php?sid=MI#:~:text=Michigan%20Quick%20Facts&text=In%202021%2C%20coal%20provided%20the,three%2Dfifths%20of%20that%20power (accessed on 14 October 2022).
- Wang, H.; Zhang, L.; Cheng, I.; Yao, X.; Dabek-Zlotorzynska, E. Spatiotemporal trends of PM2.5 and its major chemical components at urban sites in Canada. J. Environ. Sci. 2021, 103, 1–11. [Google Scholar] [CrossRef]
- Jaiprakash; Habib, G. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci. Total. Environ. 2017, 586, 900–916. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhao, Y.; Tian, Y.; Feng, X.; Feng, Y. Sources and uncertainties of health risks for PM2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. Environ. Int. 2022, 164, 107236. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chiang, H.-C.; Chen, M.-J.; Chuang, C.-Y.; Tsen, C.-M.; Fang, G.-C.; Tsai, Y.-I.; Chen, N.-T.; Lin, T.-Y.; Lin, S.-L.; et al. Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci. Total. Environ. 2017, 590, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, H.; Jiang, H.; Mo, Y.; Geng, X.; Li, J.; Mao, S.; Bualert, S.; Ma, S.; Li, J.; et al. Source apportionment of water-soluble oxidative potential in ambient total suspended particulate from Bangkok: Biomass burning versus fossil fuel combustion. Atmos. Environ. 2020, 235, 117624. [Google Scholar] [CrossRef]
- Taghvaee, S.; Sowlat, M.H.; Mousavi, A.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K.; Sioutas, C. Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Sci. Total. Environ. 2018, 628, 672–686. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Ashbaugh, L.L.; Malm, W.C.; Sadeh, W.Z. A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Reimann, C.; Caritat, P.D. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ. Sci. Technol. 2000, 34, 5084–5091. [Google Scholar] [CrossRef]
Species | Mean | Std Dev | Min | Median | Max | MDL | Missing (%) | <MDL (%) | Flags (%) | Valid (%) |
---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | 9.1 | 6.1 | 0 | 8.0 | 48 | 0.5 | 1.9 | 4.1 | 2.6 | 91 |
BC | 0.6 | 0.4 | 0.013 | 0.5 | 4.8 | 0.005 | 1.9 | 4.1 | 2.6 | 91 |
BrC1 * | 0.1 | 0.1 | 0.001 | 0.04 | 2.1 | NA | 2.6 | 14 | 0.1 | 84 |
BrC2 * | 0.1 | 0.1 | 0.001 | 0.06 | 1.6 | NA | 2.6 | 0.8 | 0.1 | 97 |
Ag | 2.7 | 1.5 | 0 | 2.3 | 14 | 4.33 | 11 | 73 | 4.2 | 11 |
As | 0.2 | 1.1 | 0 | 0 | 33 | 0.11 | 11 | 72 | 4.2 | 13 |
Ba | 2.9 | 13 | 0 | 1.0 | 370 | 0.95 | 11 | 40 | 4.2 | 45 |
Br | 3.2 | 2.6 | 0 | 2.7 | 49 | 0.18 | 11 | 1.3 | 4.2 | 83 |
Ca | 89 | 120 | 0 | 52 | 1600 | 0.9 | 11 | 0.5 | 4.2 | 84 |
Cd | 4.4 | 2.0 | 0.12 | 4.2 | 17 | 5.75 | 11 | 66 | 4.2 | 19 |
Co | 0.03 | 0.1 | 0 | 0 | 6 | 0.32 | 11 | 83 | 4.2 | 1.1 |
Cr | 0.3 | 3.0 | 0 | 0.06 | 110 | 0.29 | 11 | 67 | 4.2 | 18 |
Cu | 4.8 | 10 | 1.5 | 3.2 | 256 | 0.27 | 11 | 0 | 4.2 | 84 |
Fe | 120 | 250 | 0.36 | 65 | 7500 | 0.76 | 11 | 0.1 | 4.2 | 84 |
Hg | 0.6 | 0.6 | 0 | 0.45 | 10 | 0.19 | 11 | 24 | 4.2 | 60 |
K | 120 | 260 | 33 | 83 | 7000 | 2.37 | 11 | 0 | 4.2 | 84 |
Mn | 4.6 | 9.3 | 0 | 1.8 | 150 | 0.28 | 11 | 3.6 | 4.2 | 81 |
Ni | 0.5 | 1.7 | 0 | 0.27 | 41 | 0.23 | 11 | 35 | 4.2 | 49 |
Pb | 3.9 | 8.6 | 0.25 | 3.0 | 340 | 0.22 | 11 | 0 | 4.2 | 84 |
Rb | 0.2 | 0.2 | 0 | 0.16 | 2.9 | 0.34 | 11 | 70 | 4.2 | 14 |
S | 600 | 540 | 8.1 | 440 | 4100 | 6 | 11 | 0 | 4.2 | 84 |
Se | 0.7 | 1.1 | 0 | 0.35 | 20 | 0.14 | 11 | 18 | 4.2 | 66 |
Si | 410 | 220 | 47 | 360 | 3300 | 20 | 11 | 0 | 4.2 | 84 |
Sn | 0.2 | 4.4 | 0 | 0 | 140 | 7.46 | 11 | 84 | 4.2 | 0.4 |
Sr | 1.6 | 6.7 | 0.1 | 0.86 | 180 | 0.45 | 11 | 7.8 | 4.2 | 77 |
Ti | 4.1 | 4.2 | 0 | 2.9 | 55 | 0.38 | 11 | 1.5 | 4.2 | 83 |
V | 0.5 | 1.2 | 0 | 0.13 | 31 | 0.29 | 11 | 55 | 4.2 | 29 |
Zn | 26 | 56 | 0.03 | 10 | 840 | 0.23 | 11 | 0.3 | 4.2 | 84 |
PM2.5 | BC | BrC1 | BrC2 | Br | Ca | Cu | Fe | Hg | K | Mn | Pb | S | Se | Si | Sr | Ti | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BC | 0.59 | ||||||||||||||||
BrC1 | 0.36 | 0.56 | |||||||||||||||
BrC2 | 0.46 | 0.84 | 0.82 | ||||||||||||||
Br | 0.47 | 0.40 | 0.29 | 0.33 | |||||||||||||
Ca | 0.16 | 0.37 | 0.18 | 0.31 | 0.16 | ||||||||||||
Cu | 0.29 | 0.34 | 0.35 | 0.37 | 0.22 | 0.16 | |||||||||||
Fe | 0.19 | 0.39 | 0.48 | 0.46 | 0.29 | 0.47 | 0.37 | ||||||||||
Hg | −0.03 | 0.05 | 0.13 | 0.09 | − 0.01 | 0.12 | 0.09 | 0.34 | |||||||||
K | 0.32 | 0.25 | 0.23 | 0.26 | 0.16 | 0.07 | 0.92 | 0.08 | − 0.01 | ||||||||
Mn | 0.15 | 0.39 | 0.30 | 0.39 | 0.15 | 0.48 | 0.27 | 0.50 | 0.16 | 0.14 | |||||||
Pb | 0.14 | 0.26 | 0.21 | 0.27 | 0.19 | 0.17 | 0.23 | 0.32 | 0.06 | 0.13 | 0.16 | ||||||
S | 0.51 | 0.24 | 0.01 | 0.05 | 0.47 | 0.07 | 0.15 | 0.06 | − 0.03 | 0.18 | 0.06 | 0.11 | |||||
Se | 0.24 | 0.14 | 0.03 | 0.06 | 0.36 | 0.08 | 0.05 | 0.06 | − 0.01 | 0.05 | 0.06 | 0.05 | 0.33 | ||||
Si | 0.21 | 0.23 | 0.10 | 0.16 | 0.18 | 0.64 | 0.13 | 0.36 | 0.08 | 0.11 | 0.28 | 0.11 | 0.22 | 0.11 | |||
Sr | 0.25 | 0.20 | 0.19 | 0.21 | 0.11 | 0.07 | 0.90 | 0.07 | − 0.01 | 0.98 | 0.12 | 0.11 | 0.14 | 0.04 | 0.08 | ||
Ti | 0.30 | 0.39 | 0.21 | 0.32 | 0.25 | 0.62 | 0.45 | 0.38 | 0.04 | 0.44 | 0.41 | 0.16 | 0.24 | 0.17 | 0.80 | 0.41 | |
Zn | 0.09 | 0.28 | 0.19 | 0.26 | 0.14 | 0.28 | 0.18 | 0.35 | 0.13 | 0.07 | 0.64 | 0.14 | 0.09 | 0.13 | 0.17 | 0.06 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Xu, X. Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada. Atmosphere 2023, 14, 374. https://doi.org/10.3390/atmos14020374
Zhang T, Su Y, Debosz J, Noble M, Munoz A, Xu X. Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada. Atmosphere. 2023; 14(2):374. https://doi.org/10.3390/atmos14020374
Chicago/Turabian StyleZhang, Tianchu, Yushan Su, Jerzy Debosz, Michael Noble, Anthony Munoz, and Xiaohong Xu. 2023. "Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada" Atmosphere 14, no. 2: 374. https://doi.org/10.3390/atmos14020374
APA StyleZhang, T., Su, Y., Debosz, J., Noble, M., Munoz, A., & Xu, X. (2023). Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada. Atmosphere, 14(2), 374. https://doi.org/10.3390/atmos14020374