Thermal and Dynamical Characteristics of Landfalling Severe Typhoons in South China against Different Monsoon Backgrounds
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. The LSTYs in SC and Their Classification
3.1. The LSTYs in SC
3.2. Classification of the LSTYs
4. Composite Analysis of the Classified LSTYs
4.1. Environmental Circulation
4.2. Humidity and Thermal Structures
4.3. Interactions between Ocean and Typhoon
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.K.; Wang, J.J. Typhoon damage assessment model and analysis in Taiwan. Nat. Hazards 2015, 79, 497–510. [Google Scholar] [CrossRef]
- Webster, P.J. Myanmar’s deadly daffodil. Nat. Geosci. 2008, 1, 488–490. [Google Scholar] [CrossRef]
- Webersik, C.; Esteban, M.; Shibayama, T. The economic impact of future increase in tropical cyclones in Japan. Nat. Hazards 2010, 55, 233–250. [Google Scholar] [CrossRef]
- Pielke, R.A.; Gratz, J.; Landsea, C.W.; Collins, D.; Saunders, M.A.; Musulin, R. Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev. 2008, 9, 29–42. [Google Scholar] [CrossRef]
- Takagi, H. Statistics on typhoon landfalls in Vietnam: Can recent increases in economic damage be attributed to storm trends? Urban Clim. 2019, 30, 100506. [Google Scholar] [CrossRef]
- Lin, I.I.; Pun, I.F.; Lien, C.C. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophy. Res. Lett. 2014, 41, 8547–8553. [Google Scholar] [CrossRef]
- Zhang, X.H.; Duan, Y.H.; Wang, Y.Q.; Wei, N.; Hu, H. A high-resolution simulation of supertyphoon Rammasun (2014) Part I: Model verification and surface energetics analysis. Adv. Atmos. Sci. 2017, 34, 757–770. [Google Scholar] [CrossRef]
- Chen, G.M.; Zhang, X.P.; Cao, Q.; Zeng, Z.H. Evaluation of forecast performance for Super Typhoon Lekima in 2019. Front. Earth Sci.-PRC 2021, 16, 1–17. [Google Scholar] [CrossRef]
- Leroux, M.D.; Wood, K.; Elsberry, R.L.; Cayanan, E.O.; Hendricks, E.; Kucas, M.; Otto, P.; Rogers, R.; Sampson, B.; Yu, Z.F. Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Trop. Cyclone Res. Rev. 2018, 7, 85–105. [Google Scholar]
- Wang, Q.; Xu, Y.L.; Wei, N.; Wang, S.; Hu, H. Forecast and service Performance on rapidly intensification process of typhoons Rammasun (2014) and Hato (2017). Trop. Cyclone Res. Rev. 2019, 8, 18–26. [Google Scholar] [CrossRef]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsou, C.H.; Huang, P.Y.; Tu, C.Y.; Chen, C.T.; Tzeng, T.P.; Cheng, C.T. Present simulation and future typhoon activity projection over western North Pacific and Taiwan/east coast of China in 20-km HiRAM climate model. Terr. Atmos. Ocean Sci. 2016, 27, 687–703. [Google Scholar] [CrossRef]
- Chen, J.L.; Tam, C.Y.; Cheung, K.; Wang, Z.Q.; Murakami, H.; Lau, N.C.; Garner, S.T.; Xiao, Z.N.; Choy, C.W.; Wang, P. Changing impacts of tropical cyclones on East and Southeast Asian inland regions in the past and a globally warmed future climate. Front. Earth Sci. 2021, 9, 769005. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C. Recent increase in extreme intensity of tropical cyclones making landfall in South China. Clim. Dyn. 2020, 55, 1059–1074. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geos. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Guan, S.D.; Li, S.Q.; Hou, Y.J.; Hu, P.; Liu, Z.; Feng, J.Q. Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013. Int. J. Appl. Earth Obs. 2018, 68, 279–286. [Google Scholar] [CrossRef]
- Yao, C.; Xiao, Z.X.; Yang, S.; Luo, X.L. Increased severe landfall typhoons in China since 2004. Int. J. Climatol. 2021, 41, E1018–E1027. [Google Scholar] [CrossRef]
- Chen, L.S.; Xu, Y.L. Review of typhoon very heavy rainfall in China. Meteor. Environ. Sci. 2017, 40, 3–10. (In Chinese) [Google Scholar]
- Chen, T.C.; Wang, S.Y.; Yen, M.C.; Gallus, W.A. Role of the monsoon gyre in the interannual variation of tropical cyclone formation over the western North Pacific. Wea. Forecasting 2004, 19, 776–785. [Google Scholar] [CrossRef]
- Liang, J.; Wu, L.G.; Gu, G. Rapid weakening of tropical cyclones in monsoon gyres over the western North Pacific. J. Climate 2018, 31, 1015–1028. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Chen, L.S.; Li, Y. Interaction between landfalling tropical cyclone and summer monsoon with influences on torrential rain. J. Appl. Meteor. Sci. 2012, 23, 660–671. (In Chinese) [Google Scholar]
- Chang, Y.L.; Yeh, H.C.; Liu, G.R. Monsoon effect simulation on typhoon rainfall potential-Typhoon Morakot (2009). Terr. Atmos. Ocean. Sci. 2017, 28, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.S.; Wu, T.Y. Composite analysis of precipitation intensity and distribution characteristics of western track landfall typhoons over China under strong and weak monsoon conditions. Atmos. Res. 2019, 225, 131–143. [Google Scholar] [CrossRef]
- Wu, T.Y.; Zhou, Y.S.; Wang, Y.Q.; Liang, L.; Han, F.R.; Lu, X. Comparative analysis of precipitation characteristics of the westward typhoon cases “Bilis” and “Sepat” during landfall under different monsoon intensities. Chinese J. Atmos. Sci. 2021, 45, 1173–1186. (In Chinese) [Google Scholar]
- Xiao, Z.X.; Yao, C.; Luo, X.L.; Sun, H.M. A comparative study on the offshore intensification of supertyphoon Rammasun (2014) and typhoon Rumbia (2013): The role of summer monsoon. Asia-Pac. J. Atmos. Sci. 2021, 57, 405–420. [Google Scholar] [CrossRef]
- Wei, X.W.; Wu, Q.T.; Chen, M.; Wu, H.; Li, X.H. The relationship between the offshore intensification of super typhoon Rammasun and low-frequency vapor transportation and its precedent signal. J. Trop. Meteor. 2017, 33, 267–272. (In Chinese) [Google Scholar]
- Chen, X.M.; Wang, Y.Q.; Zhao, K.; Wu, D. A numerical study on rapid intensification of typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev. 2017, 145, 877–898. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.Y.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Gray, W.M. Recent advance in tropical cyclone research from rawnsonde composite analysis. In World Meteorological Organization Programme on Research in Tropical Meteorology; WMO Technic Report; Colorado State University: Fort Collins, CO, USA, 1981; 407p. [Google Scholar]
- Li, Y.; Chen, L.S.; Wang, J.Z. The diagnostic analysis on the characteristics of large scale circulation corresponding to the sustaining and decaying of tropical cyclone after it’s landfall. Acta Meteor. Sinica 2004, 62, 167–179. (In Chinese) [Google Scholar]
- Wang, B.; Wu, R.; Lau, K.M. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Duchon, C.E. Lanczos filtering in one and two dimensions. J. Appl. Meteor. 1979, 18, 1016–1022. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.; Yang, Y.; Cheng, H. Accurate evaluation of sea surface temperature cooling induced by typhoons based on satellite remote sensing observations. Water 2020, 12, 1413. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.Q.; Feng, J.X.; Fan, Y.X.; Zhu, Y.T.; Chen, D.Q. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Tech. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, X. Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol. Atmos. Phys. 2008, 99, 1–16. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. A K-means clustering algorithm. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Bian, G.F.; Nie, G.Z.; Qiu, X. How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset? Atmos. Res. 2021, 249, 105339. [Google Scholar] [CrossRef]
- Wei, Y.Z.; Xu, J.M. Retrieval of atmospheric temperature from NOAA-AMSU and its application in tropical cyclone analysis. J. Nanjing Inst. Meteor. 2005, 28, 522–529. (In Chinese) [Google Scholar]
- Wang, Y.Q.; Rao, Y.J.; Tan, Z.M.; SchÖnemann, D. A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev. 2015, 143, 3434–3452. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced stage response to a moving hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
Number | Name | LF Month | LF Province | LF Intensity (m/s) | LF Intensity (hPa) |
---|---|---|---|---|---|
1410 | Rammasun | Jul | Hainan | 70 | 890 |
7317 | Marge | Sep | Hainan | 60 | 925 |
1523 | Mujigae | Oct | Guangdong | 52 | 935 |
9617 | Sally | Sep | Guangdong | 50 | 935 |
0816 | Hagupit | Sep | Guangdong | 48 | 945 |
1714 | Hato | Aug | Guangdong | 48 | 945 |
8106 | Kelly | Jul | Hainan | 45 | 965 |
9113 | Fred | Aug | Guangdong | 45 | 960 |
0518 | Damrcy | Sep | Hainan | 45 | 950 |
1320 | Usagi | Sep | Guangdong | 45 | 930 |
1826 | Mangkhut | Sep | Guangdong | 45 | 955 |
1311 | Utor | Aug | Guangdong | 42 | 955 |
1418 | Kalmaegi | Sep | Hainan | 42 | 960 |
Cluster | Avg. Enthalpy Heat Flux (W m−2) | Translation Speed (m s−1) | Travelling Distance (km) | Distance-Integrated Flux (W m−2 × km) |
---|---|---|---|---|
WM | 239.02 | 6.18 | 1489.59 | 2.86 × 105 |
MM | 175.56 | 6.60 | 1642.20 | 2.50 × 105 |
SM | 150.89 | 5.37 | 1261.82 | 1.71 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Yao, C. Thermal and Dynamical Characteristics of Landfalling Severe Typhoons in South China against Different Monsoon Backgrounds. Atmosphere 2023, 14, 338. https://doi.org/10.3390/atmos14020338
Xiao Z, Yao C. Thermal and Dynamical Characteristics of Landfalling Severe Typhoons in South China against Different Monsoon Backgrounds. Atmosphere. 2023; 14(2):338. https://doi.org/10.3390/atmos14020338
Chicago/Turabian StyleXiao, Zhixiang, and Cai Yao. 2023. "Thermal and Dynamical Characteristics of Landfalling Severe Typhoons in South China against Different Monsoon Backgrounds" Atmosphere 14, no. 2: 338. https://doi.org/10.3390/atmos14020338
APA StyleXiao, Z., & Yao, C. (2023). Thermal and Dynamical Characteristics of Landfalling Severe Typhoons in South China against Different Monsoon Backgrounds. Atmosphere, 14(2), 338. https://doi.org/10.3390/atmos14020338