Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model
Abstract
:1. Introduction
2. Experimental Data Sets
3. Proposed Strategy
3.1. Fuzzy-Modeling
3.2. RUNge Kutta Optimizer
3.2.1. Initialization
3.2.2. Search Mechanism
3.2.3. Solutions Update
3.2.4. Enhanced Solution Quality
4. Results and Discussion
4.1. Fuzzy-Based Results
4.2. Optimization Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zacharczuk, W.; Andruszkiewicz, A.; Tatarek, A.; Alahmer, A.; Alsaqoor, S. Effect of Ca-Based Additives on the Capture of SO2 during Combustion of Pulverized Lignite. Energy 2021, 231, 120988. [Google Scholar] [CrossRef]
- Alsaqoor, S.; Alahmer, A.; Aljabarin, N.; Gougazeh, M.; Czajczynska, D.; Krzyzynska, R. Effects of Utilization of Solid and Semi-Solid Organic Waste Using Pyrolysis Techniques. In Proceedings of the 2017 8th International Renewable Energy Congress (IREC), Amman, Jordan, 21–23 March 2017; pp. 1–5. [Google Scholar]
- Venturelli, M.; Brough, D.; Milani, M.; Montorsi, L.; Jouhara, H. Comprehensive Numerical Model for the Analysis of Potential Heat Recovery Solutions in a Ceramic Industry. Int. J. Thermofluids 2021, 10, 100080. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Doraghi, Q.; Ahmad, L.; Norman, L.; Axcell, B.; Wrobel, L.; Dai, S. Thermoelectric Generator (TEG) Technologies and Applications. Int. J. Thermofluids 2021, 9, 100063. [Google Scholar] [CrossRef]
- Olabi, A.G.; Al-Murisi, M.; Maghrabie, H.M.; Yousef, B.A.A.; Sayed, E.T.; Alami, A.H.; Abdelkareem, M.A. Potential Applications of Thermoelectric Generators (TEGs) in Various Waste Heat Recovery Systems. Int. J. Thermofluids 2022, 16, 100249. [Google Scholar] [CrossRef]
- Mansour, M.A.; Beithou, N.; Othman, A.; Qandil, A.; Khalid, M.B.; Borowski, G.; Alsaqoor, S.; Alahmer, A.; Jouhara, H. Effect of Liquid Saturated Porous Medium on Heat Transfer from Thermoelectric Generator. Int. J. Thermofluids 2022, 17, 100264. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Obaideen, K.; Elsaid, K.; Wilberforce, T.; Maghrabie, H.M.; Olabi, A.G. Progress in Plant-Based Bioelectrochemical Systems and Their Connection with Sustainable Development Goals. Carbon Resour. Convers. 2021, 4, 169–183. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Co-Pyrolysis of Waste Biomass and Waste Plastics (Polystyrene and Waste Nitrile Gloves) into Renewable Fuel and Value-Added Chemicals. Carbon Resour. Convers. 2020, 3, 145–155. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Large Scale Application of Carbon Capture to Process Industries—A Review. J. Clean. Prod. 2022, 362, 132300. [Google Scholar] [CrossRef]
- Akpasi, S.O.; Isa, Y.M. Review of Carbon Capture and Methane Production from Carbon Dioxide. Atmosphere 2022, 13, 1958. [Google Scholar] [CrossRef]
- Gunawardene, O.H.P.; Gunathilake, C.A.; Vikrant, K.; Amaraweera, S.M. Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. Atmosphere 2022, 13, 397. [Google Scholar] [CrossRef]
- Bao, J.; Lu, W.-H.; Zhao, J.; Bi, X.T. Greenhouses for CO2 Sequestration from Atmosphere. Carbon Resour. Convers. 2018, 1, 183–190. [Google Scholar] [CrossRef]
- Alahmer, A.; Ajib, S.; Wang, X. Comprehensive Strategies for Performance Improvement of Adsorption Air Conditioning Systems: A Review. Renew. Sustain. Energy Rev. 2019, 99, 138–158. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Lootah, M.A.; Sayed, E.T.; Wilberforce, T.; Alawadhi, H.; Yousef, B.A.A.; Olabi, A.G. Fuel Cells for Carbon Capture Applications. Sci. Total Environ. 2021, 769, 144243. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.G.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A. Progress in Carbon Capture Technologies. Sci. Total Environ. 2021, 761, 143203. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Shehata, N.; Alami, A.H.; Maghrabie, H.M.; Abdelkareem, M.A. Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy. Energies 2022, 15, 8639. [Google Scholar] [CrossRef]
- Olabi, A.G.; Rezk, H.; Sayed, E.T.; Ghoniem, R.M.; Abdelkareem, M.A. Boosting Carbon Dioxide Adsorption Capacity Applying Jellyfish Optimization and ANFIS-Based Modelling. Ain Shams Eng. J. 2022, 14, 101931. [Google Scholar] [CrossRef]
- Dutcher, A.C.O. Capture Technology Development from the Beginning of 2013—A Review. ACS Appl. Mater. Interfaces 2015, 7, 2137–2148. [Google Scholar] [CrossRef]
- Liang, Z.; Fu, K.; Idem, R.; Tontiwachwuthikul, P. Review on Current Advances, Future Challenges and Consideration Issues for Post-Combustion CO2 Capture Using Amine-Based Absorbents. Chin. J. Chem. Eng. 2016, 24, 278–288. [Google Scholar] [CrossRef]
- Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.Ö.; Snurr, R.Q.; O’Keeffe, M.; Kim, J. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef]
- Yaumi, A.L.; Bakar, M.Z.A.; Hameed, B.H. Recent Advances in Functionalized Composite Solid Materials for Carbon Dioxide Capture. Energy 2017, 124, 461–480. [Google Scholar] [CrossRef]
- Duan, Y.; Sorescu, D.C. CO 2 Capture Properties of Alkaline Earth Metal Oxides and Hydroxides: A Combined Density Functional Theory and Lattice Phonon Dynamics Study. J. Chem. Phys. 2010, 133, 74508. [Google Scholar] [CrossRef]
- Ghanbari, T.; Abnisa, F.; Daud, W.M.A.W. A Review on Production of Metal Organic Frameworks (MOF) for CO2 Adsorption. Sci. Total Environ. 2020, 707, 135090. [Google Scholar] [CrossRef]
- Saha, D.; Kienbaum, M.J. Role of Oxygen, Nitrogen and Sulfur Functionalities on the Surface of Nanoporous Carbons in CO2 Adsorption: A Critical Review. Microporous Mesoporous Mater. 2019, 287, 29–55. [Google Scholar] [CrossRef]
- Creamer, A.E.; Gao, B. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review. Environ. Sci. Technol. 2016, 50, 7276–7289. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, S.; Mosey, N.J. Effects of Reduced Dimensionality on the Properties of Magnesium Hydroxide and Calcium Hydroxide Nanostructures. Phys. Chem. Chem. Phys. 2017, 19, 1963–1974. [Google Scholar] [CrossRef] [PubMed]
- Bararpour, S.T.; Adanez, J.; Mahinpey, N. Application of Core-Shell-Structured K2CO3-Based Sorbents in Postcombustion CO2 Capture: Statistical Analysis and Optimization Using Response Surface Methodology. Energy Fuels 2020, 34, 3429–3439. [Google Scholar] [CrossRef]
- Nassef, A.M.; Fathy, A.; Sayed, E.T.; Abdelkareem, M.A.; Rezk, H.; Tanveer, W.H.; Olabi, A.G. Maximizing SOFC Performance through Optimal Parameters Identification by Modern Optimization Algorithms. Renew. Energy 2019, 138, 458–464. [Google Scholar] [CrossRef]
- Alahmer, A.; Alsaqoor, S. Simulation and Optimization of Multi-Split Variable Refrigerant Flow Systems. Ain Shams Eng. J. 2018, 9, 1705–1715. [Google Scholar] [CrossRef]
- Rezk, H.; Nassef, A.M.; Inayat, A.; Sayed, E.T.; Shahbaz, M.; Olabi, A.G. Improving the Environmental Impact of Palm Kernel Shell through Maximizing Its Production of Hydrogen and Syngas Using Advanced Artificial Intelligence. Sci. Total Environ. 2019, 658, 1150–1160. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.G.; Monopoli, D.; Dassisti, M.; Sayed, E.T.; Abdelkareem, M.A. Design Optimization of Proton Exchange Membrane Fuel Cell Bipolar Plate. Energy Convers. Manag. 2023, 277, 116586. [Google Scholar] [CrossRef]
- Rubio, G.A.; Agila, W.E. A Fuzzy Model to Manage Water in Polymer Electrolyte Membrane Fuel Cells. Processes 2021, 9, 904. [Google Scholar] [CrossRef]
- Rezk, H.; Wilberforce, T.; Sayed, E.T.; Alahmadi, A.N.M.; Olabi, A.G. Finding Best Operational Conditions of PEM Fuel Cell Using Adaptive Neuro-Fuzzy Inference System and Metaheuristics. Energy Rep. 2022, 8, 6181–6190. [Google Scholar] [CrossRef]
- Sayed, E.T.; Rezk, H.; Abdelkareem, M.A.; Olabi, A.G. Artificial Neural Network Based Modelling and Optimization of Microalgae Microbial Fuel Cell. Int. J. Hydrogen Energy, 2023; in press. [Google Scholar] [CrossRef]
- de Ramón-Fernández, A.; Salar-García, M.J.; Ruiz-Fernández, D.; Greenman, J.; Ieropoulos, I. Modelling the Energy Harvesting from Ceramic-Based Microbial Fuel Cells by Using a Fuzzy Logic Approach. Appl. Energy 2019, 251, 113321. [Google Scholar] [CrossRef]
- Rezk, H.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Performance Improvement of Co-culture Inoculated Microbial Fuel Cell Using Fuzzy Modelling and Harris Hawks Optimization. Int. J. Energy Res. 2022, 46, 14396–14407. [Google Scholar] [CrossRef]
- Alahmer, H.; Alahmer, A.; Alkhazaleh, R.; Al-Amayreh, M.I. Modeling, Polynomial Regression, and Artificial Bee Colony Optimization of SI Engine Performance Improvement Powered by Acetone–Gasoline Fuel Blends. Energy Rep. 2023, 9, 55–64. [Google Scholar] [CrossRef]
- Salameh, T.; Kumar, P.P.; Sayed, E.T.; Abdelkareem, M.A.; Rezk, H.; Olabi, A.G. Fuzzy Modeling and Particle Swarm Optimization of Al2O3/SiO2 Nanofluid. Int. J. Thermofluids 2021, 10, 100084. [Google Scholar] [CrossRef]
- Sayed, E.T.; Rezk, H.; Olabi, A.G.; Gomaa, M.R.; Hassan, Y.B.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Application of Artificial Intelligence to Improve the Thermal Energy and Exergy of Nanofluid-Based PV Thermal/Nano-Enhanced Phase Change Material. Energies 2022, 15, 8494. [Google Scholar] [CrossRef]
- Rezk, H.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A.; Ghoniem, R.M.; Olabi, A.G. Fuzzy Modelling and Metaheuristic to Minimize the Temperature of Lithium-Ion Battery for the Application in Electric Vehicles. J. Energy Storage 2022, 50, 104552. [Google Scholar] [CrossRef]
- Salameh, T.; Sayed, E.T.; Olabi, A.G.; Hdaib, I.I.; Allan, Y.; Alkasrawi, M.; Abdelkareem, M.A. Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process. Fermentation 2022, 8, 483. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Abdelkareem, M.A.; Alami, A.H.; Sayed, E.T. Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm. Sustainability 2023, 15, 1589. [Google Scholar] [CrossRef]
- Salameh, T.; Kumar, P.P.; Olabi, A.G.; Obaideen, K.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Best Battery Storage Technologies of Solar Photovoltaic Systems for Desalination Plant Using the Results of Multi Optimization Algorithms and Sustainable Development Goals. J. Energy Storage 2022, 55, 105312. [Google Scholar] [CrossRef]
- Alahmer, A.; Rezk, H.; Aladayleh, W.; Mostafa, A.O.; Abu-Zaid, M.; Alahmer, H.; Gomaa, M.R.; Alhussan, A.A.; Ghoniem, R.M. Modeling and Optimization of a Compression Ignition Engine Fueled with Biodiesel Blends for Performance Improvement. Mathematics 2022, 10, 420. [Google Scholar] [CrossRef]
- Reddy, S.; Panwar, L.K.; Panigrahi, B.K.; Kumar, R. Computational Intelligence for Demand Response Exchange Considering Temporal Characteristics of Load Profile via Adaptive Fuzzy Inference System. IEEE Trans. Emerg. Top. Comput. Intell. 2017, 2, 235–245. [Google Scholar] [CrossRef]
- Alahmer, A.; Ajib, S. Solar Cooling Technologies: State of Art and Perspectives. Energy Convers. Manag. 2020, 214, 112896. [Google Scholar] [CrossRef]
- Tang, Y.M.; Zhang, L.; Bao, G.Q.; Ren, F.J.; Pedrycz, W. Symmetric Implicational Algorithm Derived from Intuitionistic Fuzzy Entropy. Iran. J. Fuzzy Syst. 2022, 19, 27–44. [Google Scholar]
- Alahmer, A.; Alahmer, H.; Handam, A.; Rezk, H. Environmental Assessment of a Diesel Engine Fueled with Various Biodiesel Blends: Polynomial Regression and Grey Wolf Optimization. Sustainability 2022, 14, 1367. [Google Scholar] [CrossRef]
- Alahmer, H.; Alahmer, A.; Alkhazaleh, R.; Alrbai, M. Exhaust Emission Reduction of a SI Engine Using Acetone–Gasoline Fuel Blends: Modeling, Prediction, and Whale Optimization Algorithm. Energy Rep. 2023, 9, 77–86. [Google Scholar] [CrossRef]
- Alahmer, H.; Alahmer, A.; Alkhazaleh, R.; Alrbai, M.; Alamayreh, M.I. Applied Intelligent Grey Wolf Optimizer (IGWO) to Improve the Performance of CI Engine Running on Emulsion Diesel Fuel Blends. Fuels 2023, 4, 35–57. [Google Scholar]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the Metaphor: An Efficient Optimization Algorithm Based on Runge Kutta Method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, Y.; Li, C.; Lu, S. Carbonation Behavior of K2CO3/AC in Low Reaction Temperature and CO2 Concentration. Chem. Eng. J. 2014, 254, 524–530. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, X.; Zhao, C. K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 1: Carbonation Behaviors of K2CO3/Al2O3. Energy Fuels 2012, 26, 1401–1405. [Google Scholar] [CrossRef]
Run | A | B | C | D | E |
---|---|---|---|---|---|
1 | 60 | 30 | 1.25 | 6.13 | 6.05 |
2 | 60 | 30 | 1.25 | 6.01 | 6.05 |
3 | 60 | 30 | 1.25 | 5.90 | 6.05 |
4 | 60 | 30 | 1.25 | 5.88 | 6.05 |
5 | 60 | 45 | 2 | 4.83 | 4.87 |
6 | 80 | 30 | 0.5 | 2.52 | 2.86 |
7 | 60 | 15 | 0.5 | 2.61 | 2.57 |
8 | 40 | 30 | 0.5 | 3.86 | 3.69 |
9 | 60 | 15 | 2 | 2.12 | 2.26 |
10 | 80 | 15 | 1.25 | 2.35 | 2.05 |
11 | 80 | 45 | 1.25 | 5.13 | 4.92 |
12 | 60 | 45 | 0.5 | 4.95 | 4.81 |
13 | 40 | 15 | 1.25 | 2.56 | 2.77 |
14 | 40 | 45 | 1.25 | 4.45 | 4.75 |
15 | 60 | 30 | 1.25 | 6.35 | 6.05 |
16 | 80 | 30 | 2 | 3.13 | 3.29 |
17 | 40 | 30 | 2 | 3.35 | 3.01 |
MSE | RMSE | Coefficient of Determination (R2) | ||||||
---|---|---|---|---|---|---|---|---|
Train | Test | All | Train | Test | All | Train | Test | All |
1.15 × 10−12 | 0.0962 | 0.0296 | 1.07 × 10−6 | 0.3101 | 0.172 | 1.0 | 0.9873 | 0.9835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassef, A.M.; Rezk, H.; Alahmer, A.; Abdelkareem, M.A. Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model. Atmosphere 2023, 14, 295. https://doi.org/10.3390/atmos14020295
Nassef AM, Rezk H, Alahmer A, Abdelkareem MA. Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model. Atmosphere. 2023; 14(2):295. https://doi.org/10.3390/atmos14020295
Chicago/Turabian StyleNassef, Ahmed M., Hegazy Rezk, Ali Alahmer, and Mohammad Ali Abdelkareem. 2023. "Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model" Atmosphere 14, no. 2: 295. https://doi.org/10.3390/atmos14020295
APA StyleNassef, A. M., Rezk, H., Alahmer, A., & Abdelkareem, M. A. (2023). Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model. Atmosphere, 14(2), 295. https://doi.org/10.3390/atmos14020295