Extreme Rainfall in Southern Burkina Faso, West Africa: Trends and Links to Atlantic Sea Surface Temperature
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results
3.1. Rainfall Gap Filling
3.2. Preliminary Statistics of Climatology Rainfall
3.3. Rainfall Trends
3.4. Link between Atlantic SST and Heavy Rainfall
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salack, S.; Saley, I.A.; Lawson, N.Z.; Zabré, I.; Daku, E.K. Scales for Rating Heavy Rainfall Events in the West African Sahel. Weather Clim. Extrem. 2018, 21, 36–42. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tazen, F.; Diarra, A.; Kabore, R.F.; Ibrahim, B.; Bologo/Traoré, M.; Traoré, K.; Karambiri, H. Trends in Flood Events and Their Relationship to Extreme Rainfall in an Urban Area of Sahelian West Africa: The Case Study of Ouagadougou, Burkina Faso. J. Flood Risk Manag. 2019, 12, e12507. [Google Scholar] [CrossRef] [Green Version]
- West Africa—Flood Affected Population—June to September 2009 (as of 14 Oct 2009)—Mauritania | ReliefWeb. Available online: https://reliefweb.int/map/mauritania/west-africa-flood-affected-population-june-september-2009-14-oct-2009 (accessed on 12 August 2022).
- Panthou, G.; Vischel, T.; Lebel, T. Recent Trends in the Regime of Extreme Rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Données Sur Les InondationsàLa Date Du 17 Août 2016—Burkina Faso | ReliefWeb. Available online: https://reliefweb.int/report/burkina-faso/donn-es-sur-les-inondations-la-date-du-17-ao-t-2016 (accessed on 12 August 2022).
- Olanrewaju, C.C.; Olanrewaju, O.A.; Chitakira, M. Impacts of Flood Disasters in Nigeria: A Critical Evaluation of Health Implications and Management. Jàmbá J. Disaster Risk Stud. 2019, 11, 1–9. [Google Scholar]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global Projections of River Flood Risk in a Warmer World. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U. Causes, Impacts and Patterns of Disastrous River Floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar]
- Ly Mouhamed; Traore, S.B.; Alhassane, A.; Sarr, B. Evolution of Some Observed Climate Extremes in the West African Sahel. Weather Clim. Extrem. 2013, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Sanogo, S.; Fink, A.H.; Omotosho, J.A.; Ba, A.; Redl, R.; Ermert, V. Spatio-Temporal Characteristics of the Recent Rainfall Recovery in West Africa. Int. J. Climatol. 2015, 35, 4589–4605. [Google Scholar] [CrossRef]
- Ta, S.; Kouadio, K.Y.; Ali, K.E.; Toualy, E.; Aman, A.; Yoroba, F. West Africa Extreme Rainfall Events and Large-Scale Ocean Surface and Atmospheric Conditions in the Tropical Atlantic. Adv. Meteorol. 2016, 2016, 1940456. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Li, Y. Social Vulnerability of Rural Households to Flood Hazards in Western Mountainous Regions of Henan Province, China. Nat. Hazards Earth Syst. Sci. 2016, 16, 1123–1134. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Wigley, T.M.L. Global Patterns of ENSO-Induced Precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef]
- Conticello, F.; Cioffi, F.; Merz, B.; Lall, U. An Event Synchronization Method to Link Heavy Rainfall Events and Large-Scale Atmospheric Circulation Features. Int. J. Climatol. 2018, 38, 1421–1437. [Google Scholar] [CrossRef]
- Gerlitz, L.; Vorogushyn, S.; Apel, H.; Gafurov, A.; Unger-Shayesteh, K.; Merz, B. A Statistically Based Seasonal Precipitation Forecast Model with Automatic Predictor Selection and Its Application to Central and South Asia. Hydrol. Earth Syst. Sci. 2016, 20, 4605–4623. [Google Scholar] [CrossRef] [Green Version]
- Steinschneider, S.; Lall, U. A Hierarchical B Ayesian Regional Model for Nonstationary Precipitation Extremes in N Orthern C Alifornia Conditioned on Tropical Moisture Exports. Water Resour. Res. 2015, 51, 1472–1492. [Google Scholar] [CrossRef]
- Sun, X.; Thyer, M.; Renard, B.; Lang, M. A General Regional Frequency Analysis Framework for Quantifying Local-Scale Climate Effects: A Case Study of ENSO Effects on Southeast Queensland Rainfall. J. Hydrol. 2014, 512, 53–68. [Google Scholar] [CrossRef] [Green Version]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.T.; Lazo, J.K.; Kumar, A.; Vitart, F.; Coughlan de Perez, E.; Ray, A.J.; Murray, V.; et al. Potential Applications of Subseasonal-to-Seasonal (S2S) Predictions: Potential Applications of Subseasonal-to-Seasonal (S2S) Predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Atiah, W.A.; Mengistu Tsidu, G.; Amekudzi, L.K.; Yorke, C. Trends and Interannual Variability of Extreme Rainfall Indices over Ghana, West Africa. Appl. Clim. 2020, 140, 1393–1407. [Google Scholar] [CrossRef]
- Diatta, S.; Diedhiou, C.W.; Dione, D.M.; Sambou, S. Spatial Variation and Trend of Extreme Precipitation in West Africa and Teleconnections with Remote Indices. Atmosphere 2020, 11, 999. [Google Scholar] [CrossRef]
- Nana, T.J. Impact of Climate Change on Cereal Production in Burkina Faso. J. Agric. Environ. Sci. 2019, 8, 14–24. [Google Scholar] [CrossRef]
- Dieppois, B.; Durand, A.; Fournier, M.; Diedhiou, A.; Fontaine, B.; Massei, N.; Nouaceur, Z.; Sebag, D. Low-Frequency Variability and Zonal Contrast in Sahel Rainfall and Atlantic Sea Surface Temperature Teleconnections during the Last Century. Theor. Appl. Climatol. 2015, 121, 139–155. [Google Scholar] [CrossRef]
- Suhaila, J.; Sayang, M.D.; Jemain, A.A. Revised Spatial Weighting Methods for Estimation of Missing Rainfall Data. Asia-Pac. J. Atmos. Sci. 2008, 44, 93–104. [Google Scholar]
- Chen, F.-W.; Liu, C.-W. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R. A Nonparametric Trend Test for Seasonal Data with Serial Dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Pilon, P. A Comparison of the Power of the t Test, Mann-Kendall and Bootstrap Tests for Trend Detection/Une Comparaison de La Puissance Des Tests t de Student, de Mann-Kendall et Du Bootstrap Pour La Détection de Tendance. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A. Changing Climate Both Increases and Decreases European River Floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.-S.; Wang, X.-J. Trends Analysis of Rainfall and Rainfall Extremes in Sarawak, Malaysia Using Modified Mann–Kendall Test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Yang, X.; Xie, X.; Liu, D.L.; Ji, F.; Wang, L. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region. Adv. Meteorol. 2015, 2015, 563629. [Google Scholar] [CrossRef] [Green Version]
- Acero, F.J.; García, J.A.; Gallego, M.C. Peaks-over-Threshold Study of Trends in Extreme Rainfall over the Iberian Peninsula. J. Clim. 2011, 24, 1089–1105. [Google Scholar] [CrossRef]
- Acero, F.J.; García, J.A.; Gallego, M.C.; Parey, S.; Dacunha-Castelle, D. Trends in Summer Extreme Temperatures over the Iberian Peninsula Using Nonurban Station Data. J. Geophys. Res. Atmos. 2014, 119, 39–53. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Model of Extremes Values, 1st ed.; Springer Series in Statistics; Springer-Verlag: London, UK, 2001; ISBN 978-1-84996-874-4. [Google Scholar]
- Gilleland, E.; Katz, R.W. ExtRemes 2.0: An Extreme Value Analysis Package in R. J. Stat. Softw. 2016, 72, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, Y.; Charron, C.; Ouarda, T.B. A Non-Stationary Heat Spell Frequency, Intensity, and Duration Model for France, Integrating Teleconnection Patterns and Climate Change. Atmosphere 2021, 12, 1387. [Google Scholar] [CrossRef]
- Tramblay, Y.; Neppel, L.; Carreau, J.; Najib, K. Non-Stationary Frequency Analysis of Heavy Rainfall Events in Southern France. Hydrol. Sci. J. 2013, 58, 280–294. [Google Scholar] [CrossRef]
- Smith, R. Statistics of Extremes, with Applications in Environment, Insurance and Finance; CRC Press: Boca Raton, FL, USA, 2002; Volume 99. [Google Scholar] [CrossRef]
- Ismail, W.W.; Zin, W.Z.W.; Ibrahim, W. Estimation of Rainfall and Stream Flow Missing Data for Terengganu, Malaysia by Using Interpolation Technique Methods. Malays. J. Fundam. Appl. Sci 2017, 13, 214–218. [Google Scholar] [CrossRef]
- Klassou, K.S.; Komi, K. Analysis of Extreme Rainfall in Oti River Basin (West Africa). J. Water Clim. Chang. 2021, 12, 1997–2009. [Google Scholar] [CrossRef]
- Larbi, I.; Hountondji, F.C.; Annor, T.; Agyare, W.A.; Mwangi Gathenya, J.; Amuzu, J. Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana. Climate 2018, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I. Global Assessment of Trends in Wetting and Drying over Land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. Climate Change 2021: The Physical Science Basis. Contrib. Work. Group I Sixth Assess. Rep. Intergov. Panel Clim. Chang. 2021, 2. [Google Scholar]
- Palacios-Rodríguez, F.; Toulemonde, G.; Carreau, J.; Opitz, T. Generalized Pareto Processes for Simulating Space-Time Extreme Events: An Application to Precipitation Reanalyses. Stoch. Environ. Res. Risk Assess. 2020, 34, 2033–2052. [Google Scholar] [CrossRef]
- Fofana, M.; Adounkpe, J.; Larbi, I.; Hounkpe, J.; Koubodana, H.D.; Toure, A.; Bokar, H.; Dotse, S.-Q.; Limantol, A.M. Urban Flash Flood and Extreme Rainfall Events Trend Analysis in Bamako, Mali. Environ. Chall. 2022, 6, 100449. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Andersson, J.C.; Müller, E.N.; Hattermann, F.F. Climate or Land Use?—Attribution of Changes in River Flooding in the Sahel Zone. Water 2015, 7, 2796–2820. [Google Scholar] [CrossRef]
Index | Name | Unit | Description |
---|---|---|---|
R1day | Wet days | Days | Annual number of wet days (day with rainfall ≥ 1 mm) |
R10 | Heavy precipitation days | Days | Annual number of days with rainfall ≥ 10 mm |
R20 | Very heavy precipitation days | Days | Annual number of days with rainfall ≥ 20 mm |
R95p | Very wet days | Days | Annual number of days with rainfall ≥ 95th percentile of the wet days |
SDII | Simple daily intensity | mm/day | Mean rainfall on wet days |
RX1day | Maximum 1-day precipitation | Mm | Annual maximum 1-day rainfall |
RX5day | Maximum 5-day precipitation | Mm | Annual maximum of consecutive 5-days rainfall |
PRCPTOT | Total wet-day precipitation | Mm | Annual total from wet days |
5% of Missing Data | 10% of Missing Data | 15% of Missing Data | ||||
---|---|---|---|---|---|---|
τ | RMSE | τ | RMSE | τ | RMSE | |
AM | 0.46 | 10.23 | 0.50 | 9.71 | 0.47 | 9.86 |
NR | 0.46 | 10.21 | 0.50 | 9.73 | 0.47 | 9.84 |
IDW | 0.96 | 2.29 | 0.92 | 2.93 | 0.88 | 3.71 |
CC | 0.47 | 9.96 | 0.49 | 9.12 | 0.48 | 9.71 |
GC | 0.47 | 10.11 | 0.47 | 9.12 | 0.48 | 3.91 |
Indices | Min | Mean (±SD) | |
---|---|---|---|
R1day | 48 | 58.2 ± 4.8 | 66 |
PRCPTOT | 803.7 | 927.5 ± 57.6 | 1029.8 |
R10 | 28.3 | 31.1 ± 1.6 | 34.1 |
R20 | 14.3 | 16.6 ± 1.2 | 19.1 |
R95p | 2.5 | 3.0 ± 0.3 | 3.5 |
SDII | 14.4 | 16.2 ± 1.2 | 19.6 |
RX1day | 61.8 | 74.5 ± 5.1 | 83.0 |
RX5day | 92.8 | 106.7 ± 6.2 | 118.2 |
Station | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Deviance | 85.07 | 148.58 | 42.76 | 60.49 | 38.99 |
p-value | |||||
Station | 6 | 7 | 8 | 9 | 10 |
Deviance | 27.61 | 48.54 | 33.08 | 42.45 | 45.20 |
p-value | |||||
Station | 11 | 12 | 13 | 14 | 15 |
Deviance | 60.56 | 45.39 | 40.16 | 69.31 | 36.51 |
p-value | |||||
Station | 16 | 17 | 18 | 19 | 20 |
Deviance | 83.93 | 49.67 | 51.28 | 65.77 | 19.34 |
p-value | |||||
Station | 21 | 22 | |||
Deviance | 56.20 | 52.93 | |||
p-value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sougué, M.; Merz, B.; Sogbedji, J.M.; Zougmoré, F. Extreme Rainfall in Southern Burkina Faso, West Africa: Trends and Links to Atlantic Sea Surface Temperature. Atmosphere 2023, 14, 284. https://doi.org/10.3390/atmos14020284
Sougué M, Merz B, Sogbedji JM, Zougmoré F. Extreme Rainfall in Southern Burkina Faso, West Africa: Trends and Links to Atlantic Sea Surface Temperature. Atmosphere. 2023; 14(2):284. https://doi.org/10.3390/atmos14020284
Chicago/Turabian StyleSougué, Madou, Bruno Merz, Jean Mianikpo Sogbedji, and François Zougmoré. 2023. "Extreme Rainfall in Southern Burkina Faso, West Africa: Trends and Links to Atlantic Sea Surface Temperature" Atmosphere 14, no. 2: 284. https://doi.org/10.3390/atmos14020284
APA StyleSougué, M., Merz, B., Sogbedji, J. M., & Zougmoré, F. (2023). Extreme Rainfall in Southern Burkina Faso, West Africa: Trends and Links to Atlantic Sea Surface Temperature. Atmosphere, 14(2), 284. https://doi.org/10.3390/atmos14020284