Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment
Abstract
:1. Introduction
2. Data and Methodology
2.1. OU MAP Ensembles during SFE 2019
2.1.1. Ensemble Data Assimilation System
2.1.2. IC Perturbation Methods
2.2. Scale-Dependent Verification of Simulated Reflectivity
3. Results and Discussion
3.1. Perturbation Characteristics for Non-Precipitation Variables
3.2. Simulated Reflectivity Verification
3.2.1. Ensemble Bias Characteristics
3.2.2. Ensemble Spread Characteristics
3.2.3. Neighborhood-Based Ensemble Skill
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weisman, M.L.; Davis, C.; Wang, W.; Manning, K.W.; Klemp, J.B. Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model. Weather Forecast. 2008, 23, 407–437. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Xue, M.; Kong, F. Hierarchical Cluster Analysis of a Convection-Allowing Ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble Clustering over the Whole Experiment Period. Mon. Weather. Rev. 2011, 139, 3694–3710. [Google Scholar] [CrossRef] [Green Version]
- Bentzien, S.; Friederichs, P. Generating and Calibrating Probabilistic Quantitative Precipitation Forecasts from the High-Resolution NWP Model COSMO-DE. Weather. Forecast. 2012, 27, 988–1002. [Google Scholar] [CrossRef]
- Tennant, W. Improving initial condition perturbations for MOGREPS-UK. Q. J. R. Meteorol. Soc. 2015, 141, 2324–2336. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Romine, G.S.; Sobash, R.A.; Fossell, K.R.; Weisman, M.L. NCAR’s Experimental Real-Time Convection-Allowing Ensemble Prediction System. Weather Forecast. 2015, 30, 1645–1654. [Google Scholar] [CrossRef]
- Potvin, C.K.; Carley, J.; Clark, A.J.; Wicker, L.J.; Skinner, P.; Reinhart, A.E.; Gallo, B.T.; Kain, J.S.; Romine, G.S.; Aligo, E.A.; et al. Systematic Comparison of Convection-Allowing Models during the 2017 NOAA HWT Spring Forecasting Experiment. Weather Forecast. 2019, 34, 1395–1416. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Wang, Y.; Reinhart, A.; Clark, A.J.; Jirak, I.L. Neighborhood- and Object-Based Probabilistic Verification of the OU MAP Ensemble Forecasts during 2017 and 2018 Hazardous Weather Testbeds. Weather Forecast. 2020, 35, 169–191. [Google Scholar] [CrossRef]
- Roberts, B.; Gallo, B.T.; Jirak, I.L.; Clark, A.J.; Dowell, D.C.; Wang, X.; Wang, Y. What Does a Convection-Allowing Ensemble of Opportunity Buy Us in Forecasting Thunderstorms? Weather Forecast. 2020, 35, 2293–2316. [Google Scholar] [CrossRef]
- Gasperoni, N.A.; Wang, X.; Wang, Y. A Comparison of Methods to Sample Model Errors for Convection-Allowing Ensemble Forecasts in the Setting of Multiscale Initial Conditions Produced by the GSI-Based EnVar Assimilation System. Mon. Weather. Rev. 2020, 148, 1177–1203. [Google Scholar] [CrossRef]
- Gasperoni, N.A.; Wang, X.; Wang, Y. Using a Cost-Effective Approach to Increase Background Ensemble Member Size within the GSI-Based EnVar System for Improved Radar Analyses and Forecasts of Convective Systems. Mon. Weather. Rev. 2022, 150, 667–689. [Google Scholar] [CrossRef]
- Peralta, C.; Ben Bouallègue, Z.; Theis, S.E.; Gebhardt, C.; Buchhold, M. Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res. Atmos. 2012, 117, D7. [Google Scholar] [CrossRef]
- Kühnlein, C.; Keil, C.; Craig, G.C.; Gebhardt, C. The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Q. J. R. Meteorol. Soc. 2013, 140, 1552–1562. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Romine, G.S.; Smith, K.R.; Weisman, M.L. Characterizing and Optimizing Precipitation Forecasts from a Convection-Permitting Ensemble Initialized by a Mesoscale Ensemble Kalman Filter. Weather Forecast. 2014, 29, 1295–1318. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.; Wang, X. Interactions between Physics Diversity and Multiscale Initial Condition Perturbations for Storm-Scale Ensemble Forecasting. Mon. Weather. Rev. 2020, 148, 3549–3565. [Google Scholar] [CrossRef]
- Kalina, E.A.; Jankov, I.; Alcott, T.; Olson, J.; Beck, J.; Berner, J.; Dowell, D.; Alexander, C. A Progress Report on the Development of the High-Resolution Rapid Refresh Ensemble. Weather Forecast. 2021, 36, 791–804. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X. A Study of Multiscale Initial Condition Perturbation Methods for Convection-Permitting Ensemble Forecasts. Mon. Weather. Rev. 2016, 144, 2579–2604. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Development of Convective-Scale Static Background Error Covariance within GSI-Based Hybrid EnVar System for Direct Radar Reflectivity Data Assimilation. Mon. Weather. Rev. 2021, 149, 2713–2736. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Direct Assimilation of Radar Reflectivity without Tangent Linear and Adjoint of the Nonlinear Observation Operator in the GSI-Based EnVar System: Methodology and Experiment with the 8 May 2003 Oklahoma City Tornadic Supercell. Mon. Weather Rev. 2017, 145, 1447–1471. [Google Scholar] [CrossRef]
- Han, F.; Wang, X. An Object-Based Method for Tracking Convective Storms in Convection Allowing Models. Atmosphere 2021, 12, 1535. [Google Scholar] [CrossRef]
- Smith, T.M.; Lakshmanan, V.; Stumpf, G.J.; Ortega, K.; Hondl, K.; Cooper, K.; Calhoun, K.; Kingfield, D.; Manross, K.L.; Toomey, R.; et al. Multi-Radar Multi-Sensor (MRMS) Severe Weather and Aviation Products: Initial Operating Capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 1617–1630. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; NCAR: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Carley, J.; Wicker, L.J.; Karstens, C. A Comparison of Multiscale GSI-Based EnKF and 3DVar Data Assimilation Using Radar and Conventional Observations for Midlatitude Convective-Scale Precipitation Forecasts. Mon. Weather. Rev. 2015, 143, 3087–3108. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M. Ensemble Data Assimilation without Perturbed Observations. Mon. Weather Rev. 2002, 130, 1913–1924. [Google Scholar] [CrossRef]
- Wang, X. Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework. Mon. Weather Rev. 2010, 138, 2990–2995. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Parrish, D.; Kleist, D.T.; Whitaker, J.S. GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments. Mon. Weather Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Rapid Update with EnVar Direct Radar Reflectivity Data Assimilation for the NOAA Regional Convection-Allowing NMMB Model over the CONUS: System Description and Initial Experiment Results. Atmosphere 2021, 12, 1286. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M. Evaluating Methods to Account for System Errors in Ensemble Data Assimilation. Mon. Weather Rev. 2012, 140, 3078–3089. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 895–912. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Smirnova, T.G.; Brown, J.M.; Benjamin, S.G.; Kenyon, J.S. Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) Available in the Weather Research and Forecasting (WRF) Model. Mon. Weather. Rev. 2016, 144, 1851–1865. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Duda, J.D.; Wang, X.; Wang, Y.; Carley, J.R. Comparing the Assimilation of Radar Reflectivity Using the Direct GSI-Based Ensemble–Variational (EnVar) and Indirect Cloud Analysis Methods in Convection-Allowing Forecasts over the Continental United States. Mon. Weather Rev. 2019, 147, 1655–1678. [Google Scholar] [CrossRef]
- Wilkins, A.; Johnson, A.; Wang, X.; Gasperoni, N.A.; Wang, Y. Multi-Scale Object-Based Probabilistic Forecast Evaluation of WRF-Based CAM Ensemble Configurations. Atmosphere 2021, 12, 1630. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Sobash, R.A. Generating Probabilistic Forecasts from Convection-Allowing Ensembles Using Neighborhood Approaches: A Review and Recommendations. Mon. Weather Rev. 2017, 145, 3397–3418. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Wandishin, M.S. The Correspondence Ratio in Forecast Evaluation. Weather Forecast. 2000, 15, 593–602. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X. Design and Implementation of a GSI-Based Convection-Allowing Ensemble Data Assimilation and Forecast System for the PECAN Field Experiment. Part I: Optimal Configurations for Nocturnal Convection Prediction Using Retrospective Cases. Weather Forecast. 2017, 32, 289–315. [Google Scholar] [CrossRef]
- Clark, A.J.; Gallus, W.A.; Xue, M.; Kong, F. A Comparison of Precipitation Forecast Skill between Small Convection-Allowing and Large Convection-Parameterizing Ensembles. Weather Forecast. 2009, 24, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Weather. Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; 676p. [Google Scholar]
- GEFS. Global Ensemble Forecast System Operational Forecast Files. 2019. Available online: https://registry.opendata.aws/noaa-gefs/ (accessed on 1 May 2019).
- GFS. Global Forecast System Operational Forecast Files. 2019. Available online: https://registry.opendata.aws/noaa-gfs-bdp-pds/ (accessed on 1 May 2019).
- SREF. Short Range Ensemble Forecast Operational Forecast Files. Available online: https://www.nco.ncep.noaa.gov/pmb/products/sref/ (accessed on 1 May 2019).
- GSI-EnVAR. Gridpoint Statistical Interpolation—Ensemble Variational Data Asssimilation Package, Version 12.0.2. 2019. Available online: https://github.com/NOAA-EMC/GSI (accessed on 15 January 2019).
- WRF. Weather Research and Forecast (WRF) Advanced Research WRF Version 3.9.1.1. 2019. Available online: https://github.com/NCAR/WRFV3/releases (accessed on 15 January 2019).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.; Han, F.; Wang, Y.; Wang, X. Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Atmosphere 2023, 14, 255. https://doi.org/10.3390/atmos14020255
Johnson A, Han F, Wang Y, Wang X. Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Atmosphere. 2023; 14(2):255. https://doi.org/10.3390/atmos14020255
Chicago/Turabian StyleJohnson, Aaron, Fan Han, Yongming Wang, and Xuguang Wang. 2023. "Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment" Atmosphere 14, no. 2: 255. https://doi.org/10.3390/atmos14020255
APA StyleJohnson, A., Han, F., Wang, Y., & Wang, X. (2023). Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Atmosphere, 14(2), 255. https://doi.org/10.3390/atmos14020255