Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment
Abstract
1. Introduction
2. Data and Methodology
2.1. OU MAP Ensembles during SFE 2019
2.1.1. Ensemble Data Assimilation System
2.1.2. IC Perturbation Methods
2.2. Scale-Dependent Verification of Simulated Reflectivity
3. Results and Discussion
3.1. Perturbation Characteristics for Non-Precipitation Variables
3.2. Simulated Reflectivity Verification
3.2.1. Ensemble Bias Characteristics
3.2.2. Ensemble Spread Characteristics
3.2.3. Neighborhood-Based Ensemble Skill
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weisman, M.L.; Davis, C.; Wang, W.; Manning, K.W.; Klemp, J.B. Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model. Weather Forecast. 2008, 23, 407–437. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Xue, M.; Kong, F. Hierarchical Cluster Analysis of a Convection-Allowing Ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble Clustering over the Whole Experiment Period. Mon. Weather. Rev. 2011, 139, 3694–3710. [Google Scholar] [CrossRef]
- Bentzien, S.; Friederichs, P. Generating and Calibrating Probabilistic Quantitative Precipitation Forecasts from the High-Resolution NWP Model COSMO-DE. Weather. Forecast. 2012, 27, 988–1002. [Google Scholar] [CrossRef]
- Tennant, W. Improving initial condition perturbations for MOGREPS-UK. Q. J. R. Meteorol. Soc. 2015, 141, 2324–2336. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Romine, G.S.; Sobash, R.A.; Fossell, K.R.; Weisman, M.L. NCAR’s Experimental Real-Time Convection-Allowing Ensemble Prediction System. Weather Forecast. 2015, 30, 1645–1654. [Google Scholar] [CrossRef]
- Potvin, C.K.; Carley, J.; Clark, A.J.; Wicker, L.J.; Skinner, P.; Reinhart, A.E.; Gallo, B.T.; Kain, J.S.; Romine, G.S.; Aligo, E.A.; et al. Systematic Comparison of Convection-Allowing Models during the 2017 NOAA HWT Spring Forecasting Experiment. Weather Forecast. 2019, 34, 1395–1416. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Wang, Y.; Reinhart, A.; Clark, A.J.; Jirak, I.L. Neighborhood- and Object-Based Probabilistic Verification of the OU MAP Ensemble Forecasts during 2017 and 2018 Hazardous Weather Testbeds. Weather Forecast. 2020, 35, 169–191. [Google Scholar] [CrossRef]
- Roberts, B.; Gallo, B.T.; Jirak, I.L.; Clark, A.J.; Dowell, D.C.; Wang, X.; Wang, Y. What Does a Convection-Allowing Ensemble of Opportunity Buy Us in Forecasting Thunderstorms? Weather Forecast. 2020, 35, 2293–2316. [Google Scholar] [CrossRef]
- Gasperoni, N.A.; Wang, X.; Wang, Y. A Comparison of Methods to Sample Model Errors for Convection-Allowing Ensemble Forecasts in the Setting of Multiscale Initial Conditions Produced by the GSI-Based EnVar Assimilation System. Mon. Weather. Rev. 2020, 148, 1177–1203. [Google Scholar] [CrossRef]
- Gasperoni, N.A.; Wang, X.; Wang, Y. Using a Cost-Effective Approach to Increase Background Ensemble Member Size within the GSI-Based EnVar System for Improved Radar Analyses and Forecasts of Convective Systems. Mon. Weather. Rev. 2022, 150, 667–689. [Google Scholar] [CrossRef]
- Peralta, C.; Ben Bouallègue, Z.; Theis, S.E.; Gebhardt, C.; Buchhold, M. Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res. Atmos. 2012, 117, D7. [Google Scholar] [CrossRef]
- Kühnlein, C.; Keil, C.; Craig, G.C.; Gebhardt, C. The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Q. J. R. Meteorol. Soc. 2013, 140, 1552–1562. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Romine, G.S.; Smith, K.R.; Weisman, M.L. Characterizing and Optimizing Precipitation Forecasts from a Convection-Permitting Ensemble Initialized by a Mesoscale Ensemble Kalman Filter. Weather Forecast. 2014, 29, 1295–1318. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X. Interactions between Physics Diversity and Multiscale Initial Condition Perturbations for Storm-Scale Ensemble Forecasting. Mon. Weather. Rev. 2020, 148, 3549–3565. [Google Scholar] [CrossRef]
- Kalina, E.A.; Jankov, I.; Alcott, T.; Olson, J.; Beck, J.; Berner, J.; Dowell, D.; Alexander, C. A Progress Report on the Development of the High-Resolution Rapid Refresh Ensemble. Weather Forecast. 2021, 36, 791–804. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X. A Study of Multiscale Initial Condition Perturbation Methods for Convection-Permitting Ensemble Forecasts. Mon. Weather. Rev. 2016, 144, 2579–2604. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Development of Convective-Scale Static Background Error Covariance within GSI-Based Hybrid EnVar System for Direct Radar Reflectivity Data Assimilation. Mon. Weather. Rev. 2021, 149, 2713–2736. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Direct Assimilation of Radar Reflectivity without Tangent Linear and Adjoint of the Nonlinear Observation Operator in the GSI-Based EnVar System: Methodology and Experiment with the 8 May 2003 Oklahoma City Tornadic Supercell. Mon. Weather Rev. 2017, 145, 1447–1471. [Google Scholar] [CrossRef]
- Han, F.; Wang, X. An Object-Based Method for Tracking Convective Storms in Convection Allowing Models. Atmosphere 2021, 12, 1535. [Google Scholar] [CrossRef]
- Smith, T.M.; Lakshmanan, V.; Stumpf, G.J.; Ortega, K.; Hondl, K.; Cooper, K.; Calhoun, K.; Kingfield, D.; Manross, K.L.; Toomey, R.; et al. Multi-Radar Multi-Sensor (MRMS) Severe Weather and Aviation Products: Initial Operating Capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 1617–1630. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; NCAR: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X.; Carley, J.; Wicker, L.J.; Karstens, C. A Comparison of Multiscale GSI-Based EnKF and 3DVar Data Assimilation Using Radar and Conventional Observations for Midlatitude Convective-Scale Precipitation Forecasts. Mon. Weather. Rev. 2015, 143, 3087–3108. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M. Ensemble Data Assimilation without Perturbed Observations. Mon. Weather Rev. 2002, 130, 1913–1924. [Google Scholar] [CrossRef]
- Wang, X. Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework. Mon. Weather Rev. 2010, 138, 2990–2995. [Google Scholar] [CrossRef]
- Wang, X.; Parrish, D.; Kleist, D.T.; Whitaker, J.S. GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments. Mon. Weather Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. Rapid Update with EnVar Direct Radar Reflectivity Data Assimilation for the NOAA Regional Convection-Allowing NMMB Model over the CONUS: System Description and Initial Experiment Results. Atmosphere 2021, 12, 1286. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M. Evaluating Methods to Account for System Errors in Ensemble Data Assimilation. Mon. Weather Rev. 2012, 140, 3078–3089. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Smirnova, T.G.; Brown, J.M.; Benjamin, S.G.; Kenyon, J.S. Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) Available in the Weather Research and Forecasting (WRF) Model. Mon. Weather. Rev. 2016, 144, 1851–1865. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Duda, J.D.; Wang, X.; Wang, Y.; Carley, J.R. Comparing the Assimilation of Radar Reflectivity Using the Direct GSI-Based Ensemble–Variational (EnVar) and Indirect Cloud Analysis Methods in Convection-Allowing Forecasts over the Continental United States. Mon. Weather Rev. 2019, 147, 1655–1678. [Google Scholar] [CrossRef]
- Wilkins, A.; Johnson, A.; Wang, X.; Gasperoni, N.A.; Wang, Y. Multi-Scale Object-Based Probabilistic Forecast Evaluation of WRF-Based CAM Ensemble Configurations. Atmosphere 2021, 12, 1630. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Sobash, R.A. Generating Probabilistic Forecasts from Convection-Allowing Ensembles Using Neighborhood Approaches: A Review and Recommendations. Mon. Weather Rev. 2017, 145, 3397–3418. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Wandishin, M.S. The Correspondence Ratio in Forecast Evaluation. Weather Forecast. 2000, 15, 593–602. [Google Scholar] [CrossRef]
- Johnson, A.; Wang, X. Design and Implementation of a GSI-Based Convection-Allowing Ensemble Data Assimilation and Forecast System for the PECAN Field Experiment. Part I: Optimal Configurations for Nocturnal Convection Prediction Using Retrospective Cases. Weather Forecast. 2017, 32, 289–315. [Google Scholar] [CrossRef]
- Clark, A.J.; Gallus, W.A.; Xue, M.; Kong, F. A Comparison of Precipitation Forecast Skill between Small Convection-Allowing and Large Convection-Parameterizing Ensembles. Weather Forecast. 2009, 24, 1121–1140. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Weather. Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; 676p. [Google Scholar]
- GEFS. Global Ensemble Forecast System Operational Forecast Files. 2019. Available online: https://registry.opendata.aws/noaa-gefs/ (accessed on 1 May 2019).
- GFS. Global Forecast System Operational Forecast Files. 2019. Available online: https://registry.opendata.aws/noaa-gfs-bdp-pds/ (accessed on 1 May 2019).
- SREF. Short Range Ensemble Forecast Operational Forecast Files. Available online: https://www.nco.ncep.noaa.gov/pmb/products/sref/ (accessed on 1 May 2019).
- GSI-EnVAR. Gridpoint Statistical Interpolation—Ensemble Variational Data Asssimilation Package, Version 12.0.2. 2019. Available online: https://github.com/NOAA-EMC/GSI (accessed on 15 January 2019).
- WRF. Weather Research and Forecast (WRF) Advanced Research WRF Version 3.9.1.1. 2019. Available online: https://github.com/NCAR/WRFV3/releases (accessed on 15 January 2019).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.; Han, F.; Wang, Y.; Wang, X. Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Atmosphere 2023, 14, 255. https://doi.org/10.3390/atmos14020255
Johnson A, Han F, Wang Y, Wang X. Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Atmosphere. 2023; 14(2):255. https://doi.org/10.3390/atmos14020255
Chicago/Turabian StyleJohnson, Aaron, Fan Han, Yongming Wang, and Xuguang Wang. 2023. "Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment" Atmosphere 14, no. 2: 255. https://doi.org/10.3390/atmos14020255
APA StyleJohnson, A., Han, F., Wang, Y., & Wang, X. (2023). Scale-Dependent Verification of the OU MAP Convection Allowing Ensemble Initialized with Multi-Scale and Large-Scale Perturbations during the 2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Atmosphere, 14(2), 255. https://doi.org/10.3390/atmos14020255