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Abstract: Given the large range of resolvable space and time scales in large-domain convection-
allowing for ensemble forecasts, there is a need to better understand optimal initial-condition pertur-
bation strategies to sample the forecast uncertainty across these space and time scales. This study
investigates two initial-condition perturbation strategies for CONUS-domain ensemble forecasts
that extend into the two-day forecast lead time using traditional and object-based verification meth-
ods. Initial conditions are perturbed either by downscaling perturbations from a coarser resolution
ensemble (i.e., LARGE) or by adopting the analysis perturbations from a convective-scale, EnKF
system (i.e., MULTI). It was found that MULTI had more ensemble spread than LARGE across all
scales initially, while LARGE’s perturbation energy surpassed that of MULTI after 3 h and continued
to maintain a surplus over MULTI for the rest of the 36h forecast period. Impacts on forecast bias
were mixed, depending on the forecast lead time and forecast threshold. However, MULTI was
found to be significantly more skillful than LARGE at early forecast hours for the meso-gamma
and meso-beta scales (1–9h), which is a result of a larger and better-sampled ensemble spread at
these scales. Despite having a smaller ensemble spread, MULTI was also significantly more skillful
than LARGE on the meso-alpha scale during the 20–24h period due to a better spread-skill relation.
MULTI’s performance on the meso-alpha scale was slightly worse than LARGE’s performance during
the 6–12h period, as LARGE’s ensemble spread surpassed that of MULTI. The advantages of each
method for different forecast aspects suggest that the optimal perturbation strategy may require
a combination of both the MULTI and LARGE techniques for perturbing initial conditions in a
large-domain, convection-allowing ensemble.

Keywords: ensemble design; initial condition perturbation; convection-allowing

1. Introduction

Convection-allowing ensemble (CAE) prediction systems have been developed, oper-
ated, and evaluated in both experimental and operational settings [1–10]. A challenging
aspect of CAEs is generating initial condition (IC) perturbations (ICPs) that properly sam-
ple IC errors to account for uncertainties in a wide range of spatial scales. The most
common technique for generating ICPs in a CAE is to downscale coarse-resolution analyses
or short-term forecasts directly onto the CAE grid [4,11–14]. This approach allows the
large-scale component of the flow to be perturbed while keeping the small scales essen-
tially unperturbed at the initial time. Consequently, realistic, small-scale perturbations
are obtained only after a few hours of forecast model integration. Ensemble-based data
assimilation (EDA) provides another way to generate CAE ICPs (e.g., [14,15]). Unlike
the downscaling method, ICPs generated by EDA tend to sample the uncertainty at all
scales resolved by the Numerical Weather Prediction (NWP) model. For example, the
ensemble Kalman filter (EnKF) has been used directly on the convection-allowing grid
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with hourly [15] or 20-min [14] data assimilation (DA) cycling. EnKF has also been used
together with the ensemble–variational (EnVAR) DA on the convection-allowing grid
by recentering the EnKF perturbations around the EnVAR control analysis [9]. While
EDA on the convection-allowing grid is generally believed to improve the sampling of
convective-scale IC uncertainty, a direct comparison of the ensemble performance the to
simple downscaling of coarser-resolution ICPs has been limited to the Observation System
Simulation Experiment framework [16] or to relatively small domains and short forecast
lead times [14].

Ref. [14], or JW20, produced a multi-scale ICP with an EDA of the same horizontal
resolution (3 km) as the subsequent NWP forecasts. Their evaluations of 18h forecasts of
ten selected cases in small-domain (1200 km × 1200 km) experiments concluded that multi-
scale ICPs were superior to large-scale ICPs during early forecast hours, with a generally
decreased advantage as the forecast hours increased. Due to the limited number of cases
and the forecast duration and domain, it was unclear whether the decreased advantage of
the multi-scale ICP over time was a result of convection dissipation or storms moving out
of the domain and if/when it would regain advantage for newly initiated storms beyond
day one.

The present study further investigates the multi-scale and large-scale ICPs for the
CAE prediction. In our experimental design, forecast skill differences are attributed to
differences in ICPs only. The forecast domain is sufficiently large to sample multi-scale
spatial uncertainties from several kilometers to thousands of kilometers. Additionally,
forecast cases contain many large-scale forcing scenarios and mesoscale environments.
Specifically, this study examined twenty-five 36h forecasts from two ten-member ensembles
over the CONUS domain produced by the Multiscale data Assimilation and Predictability
(MAP) lab at the University of Oklahoma (OU) during the NOAA Hazardous Weather
Testbed 2019 Spring Forecasting Experiment (SFE 2019, hwt.nssl.noaa.gov/sfe/2019/docs/
HWT_SFE2019_operations_plan.pdf, accessed on 8 December 2022). The two ensembles
were designed similarly to the ones in JW20, with one initialized by multi-scale ICPs
derived from an EDA and the other initialized by large-scale ICPs downscaled from the
Global Ensemble Forecast System (GEFS). The EDA of the OU MAP ensemble adopts the
hybrid EnVar and EnKF DA systems [17]. The EnVar generates a deterministic control
analysis. The recentered EnKF perturbations produce the sampling of IC errors. The system
assimilates both the synoptic and meso-scale observations as well as the convective scale
radar-reflectivity observations, following [18]. When compared to JW20, the increased
number of cases and the larger CONUS domain allows for the thorough investigation of
the differences of multi-scale and downscaled large-scale ICPs. In addition, the extended
forecast period, from 18h to 36h, enables the exploration of the benefits of either large-scale
or multi-scale ICPs for second-day forecasts.

To evaluate the impact of multi-scale and large-scale ICPs on storms of different spatial
scales, the present study also introduces a new, scale-dependent verification framework.
Specifically, the object-based storm tracking technique of [19] is applied to the observed
reflectivity from the Multi-Radar Multi-Sensor (MRMS, [20]) and the simulated reflectivity
from the two ensembles. The MRMS system combines radar-reflectivity from all NEXRAD
radars to produce a gridded mosaic of composite reflectivity suitable for forecast verifi-
cation [20]. The object-based storm time series are further classified into three different
scales for verification. The structure of this paper is as follows: Section 2 describes the EDA
system, the design of two CAEs and the new, scale-dependent verification framework. The
verification results are presented in Section 3, and a summary is contained in Section 4.

2. Data and Methodology
2.1. OU MAP Ensembles during SFE 2019
2.1.1. Ensemble Data Assimilation System

The EDA system used to initialize the OU MAP ensembles during the SFE 2019 was the
GSI-based, ensemble-variational (EnVar) hybrid system based on the Advanced Research
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version of the Weather Research and Forecasting (WRF) Model (ARW; version 3.9; [21]),
which directly assimilates both conventional (i.e., temperature, moisture, wind, and surface
pressure from surface station, radiosonde, and aircraft observations) and radar-reflectivity
observations (e.g., [18,22]). Conventional data were assimilated hourly during 1800-0000
UTC, and radar-reflectivity data were assimilated every 20 min from 2300 UTC to 0000 UTC.
The density of conventional and radar observations is similar to that of Johnson et al. 2015
(their Figure 2). The conventional and radar DAs were separated into two steps to facilitate
the differences in cycling intervals and localization length scales appropriate to the different
observations and the corresponding scales of motion that they are capable of observing.

The EDA system contained forty members, including forty ensemble members up-
dated by the GSI-based EnKF [23] and one control member updated by the GSI-based
EnVar [18,24,25]. The Global Forecast System (GFS) control analysis and subsequent
forecast provided the initial conditions (ICs) and lateral boundary conditions (LBCs) for
EnVar control. The forty-member ensemble ICs and LBCs were constructed by adding
the forty-member ensemble perturbations to the GFS control analysis and forecast. The
forty-member ensemble perturbations were extracted from the GEFS and the Short-Range
Ensemble Forecast (SREF) at the National Centers for Environmental Prediction (NCEP), as
was similarly done in JW20.

Figure 1 presents the design of the EDA system for each DA cycle when both the
conventional and radar-reflectivity observations were assimilated. The flow chart was
expanded from [25,26]. The detailed procedure is introduced as follows:
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Figure 1. Flowchart for the EDA system at a particular DA cycle, t. The green box indicates
the assimilation of conventional observations, and the red box includes the assimilation of radar-
reflectivity observations. See text for details.

(1) At the analysis time t, the EnKF and EnVar were first conducted to assimilate con-
ventional observations. The ensemble first-guesses F-Mt

k, k = 1, 2, . . . , 40, and the control
first-guesses F-Mt

C were updated using EnKF and EnVar to generate the ensemble analyses
Aconv-Mt

k, k = 1, 2, . . . , 40, and the control analysis Aconv-Mt
C, respectively, in which subscript

c indicates the conventional observations assimilation step. The ensemble firstguesses were
used to estimate the background error covariances (BECs) for the EnVar update;

(2) Radar-reflectivity observations were then assimilated following a similar procedure
in step (1). The analyses Aconv-Mt

k, k = 1, 2, . . . , 40, and Aconv-Mt
C served as the first guesses,

and Aconv-Mt
k, k = 1, 2, . . . , 40, was used to estimate the BEC for the EnVar update. The

EnVar direct radar reflectivity assimilation approach of Wang and Wang 2017 was adopted.
The updated ensemble analyses through EnKF and the control analysis through EnVar
were Ar-Mt

k, k = 1, 2, . . . , 40, and Ar-Mt
C, respectively, where subscript r indicates the radar

observations assimilation step;
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(3) The 40 EnKF members Ar-Mt
k, k = 1, 2, . . . , 40, were re-centered around the

EnVar control to obtain the final ensemble analyses R-Mt
k, k = 1, 2, . . . , 40, for preventing

divergence of the ensemble from the control;
(4) The short-term forecasts were performed to advance R-Mt

k, k = 1, 2, . . . , 40, and
Ar-Mt

C to the next DA cycle, t + 1, through WRF-ARW.
If only conventional observations were available at cycle t, the procedure in the red

box (Figure 1) was skipped. The same was true for the green box when only the radar
observations were assimilated.

This system applied equivalent horizontal and vertical localization scales to the EnVar
and EnKF. The assimilation of conventional observations used a horizontal cutoff distance
of 300 km and a vertical distance of 0.55 scale height. The assimilation of radar observations
used a horizontal cutoff distance of 15 km and a vertical distance of 1.1 scale height. The
15 km scale of horizontal localization for the radar observations was guided by the spacing
of radar observations (~2 km) and was consistent with past studies assimilating radar
reflectivity in the EnKF (e.g., JW20 and [9]). The relaxation to prior spread (RTPS; [27])
inflation method was used to retain 95% of the background ensemble spread in the ensemble
analyses. Similar localization scales and RTPS coefficients were applied in JW20 and [9].

This system employed a CONUS-covering domain centered at 38.5 ◦N, 97.5 ◦W with a
size of 1620 × 1120 × 50 grid points (Figure 2). The horizontal grid spacing was 3 km and the
model top was 50 hPa. A fixed physics suite was used during DA and ensemble forecasts,
including the Mellor–Yamada–Nakanishi–Niino [28] boundary layer parameterization,
Thompson [29] microphysics parameterization, Rapid Update Cycle [30] land surface
model, and Rapid Radiative Transfer Model [31] radiation parameterization.
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2.1.2. IC Perturbation Methods

At 00z each day during SFE 2019, two 36-h, ten-member ensembles of 3 km resolution
from the OU MAP lab were launched. The first ensemble was initialized from the EnKF
analysis ensembles that were recentered on the EnVar control analysis. The second ensemble
was initialized by adding the GEFS perturbations (i.e., each GEFS member minus the GEFS
ensemble mean) to the same EnVar control analysis of the first ensemble. The GEFS
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perturbations were obtained from short-term (0–6h) forecasts from the operational global
ensemble at the NCEP. By construction, the two ensembles only differed by their ICPs. The
ensemble that directly uses the analysis perturbations from the EDA system is referred to as
“MULTI”. As described in Section 2.1.1, the EDA performed data assimilation for multiple
scales. The control EnVar analysis and recentered EnKF perturbations therefore intend to
provide an estimate of the state and the uncertainty of such a state estimate for multiple
resolved scales. The ensemble that downscales GEFS perturbations as ICPs is referred to as
“LARGE”. Because the GEFS forecast grid spacing was 50 km, we would not expect the
downscaled ICPs from GEFS to accurately resolve the analysis uncertainty on meso-beta
(20~200 km) and meso-gamma (2~20 km) scales.

It is emphasized that both LARGE and MULTI share the same ensemble mean initial
condition, and only differ in the ICPs from the mean that are added to each member. The
ICPs for MULTI not only have a higher resolution than those for LARGE, but also have
convective-scale, flow-dependent covariances resulting from the assimilation of radar-
reflectivity observations. The goal of these experiments is to evaluate the impact of the
convective-scale perturbation structure resulting from the EDA with radar observations,
compared to ensemble forecasts with the same convective-scale analysis but with perturba-
tions that only sample the larger scale-analysis uncertainty.

2.2. Scale-Dependent Verification of Simulated Reflectivity

Ref. [19] proposed an object-based tracking technique to identify convective storms as
objects and track them over time. With the proposed technique, the space-time structure
and evolution of each storm can be explicitly described by a time series of objects or an
object trajectory (OT), as referred to by [19]. OT allows one to define an attribute of a storm
by considering its temporal evolution.

To enable a scale-dependent evaluation of the MULTI and LARGE ensemble forecasts
during the 2019 SFE, we applied the tracking technique of [19] to all reflectivity forecasts
and MRMS observations. Specifically, spatial objects were first identified with a 35 dBZ
threshold and then tracked over time to identify OTs. Details of the parameters used in
the forecast and observed in storm tracking are described in [19]. We chose the eastern
USA. (east of 105 ◦W) as our verification domain for object identification, tracking, and
subsequent scale-dependent verification, following [32]. After OTs were identified in each
36h forecast and the corresponding MRMS observations, OT sizes were identified. We
define the OT size of a storm by using the medium (50th percentile) object size within the
OT, with the object size defined by the square root of its convex area. Based on the OT sizes,
identified objects in each 36h forecast and the corresponding observations were classified
into meso-alpha, meso-beta, and meso-gamma scales following the mesoscale subclass
definitions (e.g., [33]).

To illustrate the OT-based scale classification, Figure 3 shows the observed and 1–5h
forecast storm evolutions from 01z to 05z on 29 May 2019 and the corresponding identified
OTs with different scales. The selected time period and subdomain featured several storms
with distinct spatial scales, including a mature mesoscale convective system (MCS) to
the northeast of the subdomain, a line of meso-beta scale storms from northern Texas
to southern Nebraska, and several meso-gamma scale “pulse” storms that dissipated
within one hour after initiation. The color-coding of the storm objects in columns b and d
demonstrate that the OT method is able to reasonably identify the distinct scales of both
observed and forecast storms.

After all storm objects were classified based on OT size, each observed or forecasted
reflectivity field was decomposed into three mutually exclusive subfields, with each subfield
including one of the three scales. A neighborhood-based verification framework was then
applied. Specifically, the neighborhood maximum ensemble probability (NMEP) was
calculated for the three subfields with a variety of neighborhood sizes, ranging from 3 km
(model native grid) to 150 km and with two different thresholds: 35 and 45 dBZ. The NMEP
was used in our study rather than the neighborhood ensemble probability (NEP) to ensure
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we had sufficient sample sizes for the skill comparison of scale-dependent subfields [34].
Common skill measures, such as the ractions Skill Score (FSS) and reliability diagrams,
were calculated for the NMEP-based evaluation (e.g., [9]).
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Figure 4 shows the NMEPs for the full fields and scale-dependent subfields of 1h
MULTI and LARGE forecasts, validated for the representative case of 01z, 29 May 2019. The
subfields for computing the NMEPs were derived from the OT-based object classification
illustrated in Figure 3. A comparison of the full-field NMEPs of MULTI and LARGE in
Figure 3a indicates that MULTI has more small-to-medium probabilities than LARGE.
Although it is not immediately clear from the full-field NMEPs which ensemble is more,
such a distinction demonstrates MULTI’s improved ability at sampling a multi-scale spatial
uncertainty at initial forecast hours.
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The scale-dependent verification at the meso-alpha scale suggests the comparable
skills of MULTI and LARGE (Figure 4b,f); both ensembles simulated the location and spatial
extent of the observed storm with a high accuracy. Nevertheless, the larger ensemble spread
of MULTI to the south of the main storm region led to the slightly better performance of
MULTI over LARGE.

For the meso-beta and gamma scales, a major distinction between the probabilistic
skills of MULTI and LARGE was the prediction of the isolated storms in central Kansas, in
which MULTI showed better skill on both scales. Although the full-field NMEP comparison
indicated a comparable performance of the two ensembles at predicting the Kansas storms,
the scale of the storms in terms of size and duration were underestimated by both ensembles
(see Figure 3). As a result, the NMEPs in central Kansas were underestimated on the meso-
beta scale (Figure 4c,g) and overestimated on the meso-gamma scale (Figure 4d,h), with
LARGE’s under- and overestimation being more severe than the MULTI’s.

In addition to the Kansas storms, MULTI’s better performance on the meso-beta
scale was also evident from the line of storms from northern Texas to southern Oklahoma.
While LARGE showed too much confidence in predicting one of the storms near the
border of Texas and Oklahoma, MULTI was able to sample the uncertainty and predict
the coverage of the storm cluster with better skill. The subtle differences we observed
in the scale-dependent NMEPs of the two ensembles demonstrated the added benefit of
scale-dependent verification over the traditional approach.

3. Results and Discussion
3.1. Perturbation Characteristics for Non-Precipitation Variables

The distributions of perturbation energy across the different spatial scales for non-
precipitation variables (i.e., wind and temperature) are first evaluated. Similar to JW20, the
perturbation energy at different wavelengths for zonal and meridional wind and tempera-
ture at several model levels are calculated. As an example, Figure 5 shows an 850 hPa zonal
wind perturbation-energy spectra and the ratio of energy between MULTI and LARGE at
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several forecast hours. The spectra were calculated using a two-dimensional, discrete cosine
transform technique over the verification domain, averaged over ten ensemble members
and 25 cases. The full spectrum covers wavelengths ranging from 6 km to approximately
2000 km with meso-alpha, meso-beta, and meso-gamma regions marked with lines and
denoted by texts in each subfigure.
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Figure 5. (a1–a5) Perturbation-energy spectra of MULTI (solid) and LARGE (dashed) and (b1–b5)
the ratio of perturbation-energy spectra between MULTI and LARGE for an 850 hPa zonal wind
averaged over 25 forecast cases at analysis times for 3h, 6h, 12h, and 24h forecasts, respectively. The
full wavelength range was divided into meso-alpha, meso-beta, and meso-gamma scales as marked
by blue dashed lines and texts near the bottom of each subfigure.

Similar to the findings of JW20, MULTI shows a significantly larger perturbation
energy than LARGE, especially at meso-beta and gamma scales at the initial time. Such a
difference is rapidly reduced over the 1–3h forecast for all scales. Consistent with JW20,
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MULTI’s greater perturbation energy at the 3h forecast is only evident for the meso-beta
scale, with negligible differences in the meso-alpha and meso-gamma scales (Figure 5(a2)).
For the 3h forecast, it is also worth noting that LARGE’s energy actually became slightly
larger than MULTI’s energy for wavelengths greater than 500 km (Figure 5(b2)), a new
finding since JW20 that was made possible due to the larger CONUS domain used in
our study. As forecast hours increased, MULTI’s excess of meso-beta and gamma energy
continued to reduce, while LARGE’s excess of meso-alpha energy continued to expand. The
reduced difference between the LARGE and MULTI perturbation energies on meso-beta
and meso-gamma scales with an increasing lead time is a result of the spin up of the smaller
scale perturbations that are absent in the LARGE ICPs. The perturbation energy of both
ensembles became comparable for the meso-gamma scale at 6h and meso-beta scale at 12h.
During the second-day forecast period (18–36h), the energy differences between MULTI
and LARGE on the meso-beta and gamma scales were indistinguishable, but LARGE’s
excess energy on the meso-alpha scale continued (see Figure 5(a5,b5)). LARGE’s consistent
meso-alpha energy surplus over MULTI at the second day is another new finding since
JW20 and was made possible due to the extended forecasting period.

3.2. Simulated Reflectivity Verification
3.2.1. Ensemble Bias Characteristics

The ensemble bias is evaluated using areal coverage of grid points greater than a fixed
threshold for all ensemble members and MRMS data averaged over all cases. Figure 6
shows the results for the full field- and scale-dependent subfields with 35 dBZ and 45 dBZ
thresholds. The 45 dBZ threshold is used to focus on relatively strong convection, while
the 35 dBZ threshold allows for weaker convection and stratiform precipitation to also be
evaluated. To illustrate ensemble distributions, both the ensemble mean results and the
standard deviation of the ensemble members are included in Figure 6.

The largest difference between MULTI and LARGE occurred during the first 18h. For
both the 35 and 45 dBZ thresholds, the difference was characterized as an initial, (1–3h)
significantly larger coverage of the meso-gamma and beta scales from MULTI, continued
by a larger coverage of te meso-alpha scales from LARGE during the 3–18h period. The
significant difference during the 1–3h period is a combined result of spin up by the LARGE
ensemble and the spurious storms formed around observed convections in MULTI that
usually die out before 3h (see Figure 4c,d). The difference between MULTI and LARGE
during the second-day forecast period is much smaller with MULTI having a slightly larger
coverage of meso-beta storms after 27h at the 35 dBZ threshold.

The differences between the ensembles and the observation are more substantial
than the differences between MULTI and LARGE at most of the forecast lead times. Such
differences include the misplaced diurnal cycle at the 35 dBZ threshold (Figure 6a) and
the overestimated storm coverage throughout the forecast period at the 45 dBZ threshold
(Figure 6b). A scale-dependent evaluation of MULTI and LARGE indicates that both
ensembles overpredicted the meso-gamma and beta storm coverage during the 3–36h
forecast period, with MULTI having an additional overprediction during the initial 1–3h
(Figure 6e–h). As previously mentioned, MULTI’s overprediction of the meso-gamma and
beta storm coverage over 1–3h are associated with the spurious, short-lived storms that
were prone to initiate around the observed convection. Despite the overestimation for the
meso-gamma and beta scale storm coverage, the timing of the peaks and valleys of the
observed diurnal cycle are, in fact, well-represented by both ensembles in Figure 6e–h.
The diurnal maxima of the observed coverage on the meso-alpha scale with the 35 dBZ
threshold likely corresponds to the upscale growth of the mesoscale convective systems
with large, stratiform precipitation regions of moderate-intensity reflectivity. The under-
forecasting of the 35 dBZ diurnal cycle peaks on the meso-alpha scale (Figure 6c), and
the corresponding over-forecasting of the 35 dBZ diurnal cycle peaks on smaller scales
(Figure 6e,g), suggesting that the forecast model did not represent the upscale growth and
the merging of broad areas of moderate reflectivity associated with stratiform precipitation
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areas well. Since this error is common to both MULTI and LARGE, it is likely a model or
physics error rather than a direct result of the ICPs.
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Figure 6. Forecast and MRMS areal coverage (%) over the verification domain for (first row) the full
field, (2nd–4th row) meso-alpha, meso-beta, and meso-gamma subfields averaged over 25 cases with
a 35 dBZ threshold (a,c,e,g) and a 45 dBZ threshold (b,d,f,h). Blue and orange dotted lines represent
ensemble mean areal coverage for MULTI and LARGE, respectively, with shades representing one
standard deviation range among ensemble members.

Unlike the systematic biases for the meso-gamma and beta scale storm coverage, the
meso-alpha scale evaluation reveals distinct ensemble biases between the 35 and 45 dBZ
thresholds. Specifically, both ensembles showed substantial underestimation at the 35 dBZ
threshold (Figure 6c), in contrast to the consistent overestimation at the 45 dBZ threshold
(Figure 6d) for meso-alpha storm coverage. The overall out-of-phase diurnal cycle at the
3 dBZ threshold (Figure 6a) is contributed to solely by the meso-alpha scale, with ensemble
peaks located at approximately 27h of lead time at 03z, while observed peaks occurred at
30h of lead time at 06z.

To further investigate the distinct biases we identified in Figure 6, the number of
storms present at each forecast hour is evaluated. This additional measure of ensemble
bias was derived from the number of OTs identified over the verification domain. Since the
scale of each storm was already identified by the OT size, the total number of storms at any
forecast hour can be easily divided into the number of storms at each of the three scales
we define. Figure 7 shows the total number of forecasts (MULTI and LARGE) and MRMS
storms for meso-alpha, beta, and gamma scales for all 25 cases, averaged over all ensemble
members at each forecast hour.
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Figure 7. Total number of forecasts and observed storms present at each forecast hour for
(a) meso-alpha, (b) meso-beta, and (c) meso-gamma scales for all 25 cases. Blue and orange dotted
lines represent ensemble mean storm counts for MULTI and LARGE, respectively, with shades
representing one standard deviation range among ensemble members.

As is shown in Figure 7, both ensembles overestimated the number of meso-gamma
and beta storms throughout the 36h forecast period, with MULTI having a more serious
overprediction than LARGE in the initial 1–3h period. This result suggests the areal
coverage overprediction in Figure 6e–h is attributable to an overpredicted number of
meso-beta and gamma storms by both ensembles (see Figure 4). The number of meso-
alpha storms were, in general, comparable with the verified observations, suggesting
the underprediction (overprediction) of meso-alpha storm coverage at the 35 (45) dBZ
thresholds was not related to the number of simulated storms.

Figure 8 shows an example of the typical ensemble biases identified for meso-alpha
storms. The top row of Figure 8 presents the observed reflectivity and simulated reflectivity
from the control forecast, as well as the selected MULTI and LARGE members. As is clear
from the comparison, none of the simulated reflectivity fields from Figure 8b–d were able to
reproduce the spatial extent of the trailing stratiform regions accompanying the observed
convective systems in Figure 8a. As the intensity of the stratiform regions within an MCS or
squall line is usually between 35–45 dBZ, such a weakness is reflected as an underestimation
of areal coverage for meso-alpha storms only for the 35 dBZ thresholds and not for the
45 dBZ thresholds. The observed convective areas from the MCS and the squall line were
actually overestimated in this example, and such overestimation explains the systematically
overestimated areal coverage of meso-alpha storms at the 45 dBZ thresholds (Figure 7d). A
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closer examination of the MULTI and LARGE NEPs at the 45 dBZ threshold (Figure 8g,h)
indicates a more severe overestimation of convective regions by LARGE than MULTI,
which is consistent with the larger areal coverage biases of LARGE than MULTI during the
6–12h forecasts in Figure 7a–d.
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Figure 8. Reflectivity for selected subdomain for (a) MRMS, (b) 9h control forecast, (c) selected MULTI
member, and (d) selected LARGE member, as well as NEPs for (e) MULTI with 35 dBZ threshold,
(f) LARGE with 35 dBZ threshold, (g) MULTI with 45 dBZ threshold, and (h) LARGE with 45 dBZ
thresholds valid at 09z, 24 May 2019. All NEPs were derived with a neighborhood size of 9 km.

3.2.2. Ensemble Spread Characteristics

Ensemble spread in terms of simulated reflectivity is first evaluated with correspon-
dence ratio (CR, [35]). CR is defined as the ratio between the number of grid points in
which a predetermined number of ensemble members agree that an event occurred and
the number of grid points in which any ensemble member shows that the event occurred.
Therefore, a smaller value of CR indicates a greater ensemble spread. An “event occurred”
is defined as reflectivity that exceeds a predetermined threshold (35 dBZ in our application).
The threshold number of ensemble members who agree that the event occurred can be set
to any number between one and ten for a ten-member ensemble, with a larger number
being a stricter application. Here, we follow [9,36] and choose a relaxed number: four
out of ten members. Therefore, a CR of one (0) for one grid point indicates that at least
four ensemble members (at most three ensemble members) agree on the event occurring at
that location. As the value of the CR is positively (negatively) correlated with the degree
of ensemble agreement (disagreement), it is often used to measure ensemble spread in
non-continuous spatial variables such as reflectivity.

Figure 9 shows the distribution of the CR for the full reflectivity fields of MULTI and
LARGE ensembles as well as the scale-dependent fields decomposed by the OT-based
method. MULTI has a larger CR-based spread than LARGE across all scales during the
initial 1–3 forecast hours, consistent with the perturbation-energy differences of the 850 hPa
zonal wind in Figure 5. Also consistent with Figure 5 is the subsequent evolution of
ensemble spread for the scale-dependent subfields. For example, the meso-gamma scale
difference between MULTI and LARGE is minimal after 3h (Figure 9d). The ensemble
spread of LARGE for meso-alpha scale storms increased more quickly and surpassed
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MULTI after four hours into the forecast (Figure 9b). For the meso-beta scale (Figure 9c),
MULTI’s larger ensemble spread maintained for 7–8h into the forecast before LARGE caught
up and became slightly more dispersive between 24h and 30h. The highly consistent CR
differences between the scale-dependent reflectivity fields in Figure 9 and the perturbation-
energy differences in Figure 5 are an indication of the physical rationality of the OT-based
scale decomposition.
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Figure 9. Distributions of correspondence ratio (CR) of MULTI (solid) and LARGE (dashed) for
(a) the full field, (b–d) meso-alpha, meso-beta, and meso-gamma subfields aggregated over 25 cases.
The inset within each subfigure highlights the CR distributions for the first 6h forecasts.

Due to the scale-dependent bias characteristics illustrated in Section 3.2.1, the ensemble
spread by the CR is also diagnosed with bias-corrected ensemble members. The method
for bias correction is probability matching (PM; [37]), which corrects the areal coverage
bias of the ensemble forecasts by replacing the grid point value of each forecast with the
corresponding observed value at the same percentile. The assumption behind PM is that the
best spatial representation is provided by the forecasts, while the best Probability Density
Function of magnitudes is provided by the observation. A PM-based bias correction is
applied to scale-dependent subfields and combined to obtain bias-corrected full fields. The
CR for the bias-corrected ensembles suggests similar patterns in terms of the relative CR
positions of MULTI vs LARGE and an improved spread for both ensembles.

3.2.3. Neighborhood-Based Ensemble Skill

The NMEPs for a series of neighborhood sizes (3 km~150 km) and two thresholds
(35 and 45 dBZ) are derived for the full fields and scale-dependent subfields of both
ensembles. To understand the effect of ensemble bias on neighborhood skill, NMEP is
computed for both the original ensemble forecasts and the forecasts after PM-based bias
correction. The fractions skill score (FSS; [38]) was applied to these NMEPs to evaluate the
overall and scale-dependent ensemble skills of MULTI and LARGE. The FSS for NMEPs
obtained with different thresholds, neighborhood sizes, and whether bias correction was
applied all show similar qualitative conclusions. For brevity, results are presented only for
bias-corrected NMEPs of the 35 dBZ threshold and 9 km neighborhood size in Figure 10.
Results with another neighborhood size, threshold, or before bias correction will be briefly
discussed only if their qualitative conclusions differ from Figure 10. For reliability diagrams,
we are limited to diagnostics with a 35 dBZ threshold and for the first-day forecast period;
when a 45 dBZ threshold is applied or a second-day forecast period is selected, the NMEP
sample sizes for medium- to large-probability bins at scale-dependent subfields become
too small to conclude anything informative.
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Figure 10. MULTI and LARGE FSSs for NMEPs derived with a 35 dBZ threshold and a 9 km
neighborhood size for (a) the full field, (b) meso-alpha, meso-beta, and meso-gamma subfields
aggregated over 25 cases. Dots along the FSS curves indicate statistically significant differences
determined by Wilcoxon rank sum test, with filled (open) dots representing improved (degraded)
skill for MULTI at the 10% confidence level.

Figure 10 indicates that MULTI was significantly more skillful than LARGE during the
initial 1–6h forecast period due to more skillful meso-beta and gamma-scale predictions.
While the MULTI forecasts contained more small storms surrounding observed convective
systems during the first three forecast hours (e.g., Figures 4a and 7c), this time period
corresponds to an increase, rather than a decrease, in MULTI’s probabilistic forecast skill
when compared to LARGE (Figure 10a) After 6h, while the advantage still exists for meso-
beta scale, MULTI’s overall advantage becomes less significant because of its slightly
degraded skill on the meso-alpha scale when compared to LARGE. Figure 11 shows the
dependency of a full-field FSS (Figure 11a) and a subfield FSS (Figure 11b) on neighborhood
sizes at 9h of lead time. Overall, MULTI has consistently better performance, which
is significant for neighborhood sizes of 30 km and greater. This overall advantage is
contributed to the consistently better forecast skills of MULTI on the meso-beta and gamma
skills for all neighborhood sizes. MULTI’s performance on the meso-alpha scale is also
consistently worse than LARGE, but not statistically significant. Figure 11 demonstrates
that the relative performance of MULTI vs LARGE is not sensitive to neighborhood sizes
for both the full field and the scale-dependent FSSs.
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Figure 11. FSS as a function of neighborhood sizes for NMEPs derived with the 35 dBZ threshold for
(a) the full field and (b) meso-alpha, meso-beta, and meso-gamma subfields of 9h forecasts aggregated
over 25 cases. Dots along the FSS curves indicate statistically significant differences determined by
Wilcoxon rank sum test, with filled (open) dots representing improved (degraded) skill for MULTI at
the 10% confidence level.
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Figure 12 shows the reliability (a–d) and sharpness (e–h) diagrams [39] for NMEPs
with a 35 dBZ threshold and 9 km neighborhood size during 1–6h of the forecasts of
MULTI and LARGE. The reliability diagrams indicate that MULTI has a better overall
reliability for most probability bins; this is mainly due to its significantly better reliability
of the meso-beta scale. The better reliability of MULTI was accompanied by less-sharp
distributions, or a greater ensemble spread, with fewer NMEP counts in the high-probability
bins (Figure 12e–h). MULTI is also more reliable than LARGE across all scales for small-
probability bins, suggesting the greater ensemble spread of MULTI contributed to the
more reliable prediction of rare events. Meso-gamma scale reliability cannot be properly
examined across the full probability range due to a limited sample size of meso-gamma
scale events in medium- to high-probability bins. However, for low-probability events,
both ensembles showed a significant wet bias with little or no skill, suggesting there remain
great challenges to make reliable predictions of these small-scale, highly localized events.
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The significantly better overall reliability of MULTI continues into the 7–12h forecast
period for most probability events but is less significant than the earlier forecast period
(Figure 13a–d). Although there were insufficient samples to evaluate the highest forecast
probabilities on the meso-beta scale, it is clear that MULTI’s advantage for medium-probability
bins has continued during this 7–12h forecast range. On the meso-alpha scale, MULTI shows
a degraded reliability across all probability bins, with significantly worse reliability for small-
to medium-probability events (<0.5, Figure 13b). The meso-alpha scale degradation of MULTI
for small- to medium-probability events is characterized by underprediction, in accordance
with the distinct bias demonstrated in Section 3.2.2 and Figure 9; both MULTI and LARGE
underpredict the stratiform area of meso-alpha scale systems, but LARGE also overpredicts
the convective region and such a “compensation” makes it seemingly more reliable in the
<0.5 probability range. MULTI also showed a slightly degraded reliability for the meso-alpha
scale in large probability bins (>0.5) and contributed to the overall worse performance at
the 0.9 probability bin (Figure 13a). Figure 13b indicates that both ensembles overpredict
large-probability meso-alpha events, while such overprediction is more severe for MULTI.

The above diagnostics illustrate an interesting finding with respect to the relative
performance of the two ensembles on the meso-alpha scale: MULTI shows slightly degraded
performance during the 6–12h period and a significantly improved performance during the
20–24h period, despite having a smaller ensemble spread than LARGE during both periods.
This suggests that a larger ensemble spread may not always lead to more properly sampled
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uncertainty and an improved skill. To better understand the relative performances of the
two ensembles on the meso-alpha scale during the second-day forecast period, Figure 14
shows the NMEPs of the 27h MULTI and LARGE forecasts valid at 03z; 29 May 2019,
derived from the full fields and scale-dependent subfields with 35 dBZ thresholds and a
9 km neighborhood size. Compared to the NMEPs of the 1h forecasts in Figure 4; a notable
difference in the probability fields is evident at the meso-beta and gamma scales: unlike the
highly confident prediction in Figure 4; the high probability events of both ensembles are
greatly reduced in the meso-beta and gamma NMEP fields at the 27h lead time. All of the
large probability values (>0.7) are associated with the prediction of the meso-alpha scale
storm to the northeast of the subdomain (Figure 14b,f), and MULTI shows a noticeably
more skillful prediction than LARGE for this storm.
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4. Conclusions

Since convection-allowing ensemble forecast systems have become increasingly uti-
lized in operational forecast settings, there has been an increasing interest in understand-
ing optimal methods of generating initial condition perturbations for such ensembles.
Downscaling perturbations from a coarser resolution ensemble (i.e., LARGE) provides a
cost-effective solution for initializing the convection-allowing ensemble. However, initial
studies have suggested that the expense of a convective-scale data assimilation system to
provide realistic convective scale perturbations (i.e., MULTI) can have further advantages,
especially over limited forecast domains and on relatively short forecast lead times. This
study builds on these initial studies by evaluating the multi-scale performance of both types
of initial condition perturbations in a CONUS-domain ensemble out to the 36-h forecast
lead time. This study leverages a novel approach to the scale-dependent verification based
on the tracking of forecast objects across time.

The evaluation of non-precipitation variables revealed that MULTI provided more
perturbation energy than LARGE on meso-beta and meso-gamma scales at early lead times,
but less perturbation energy on meso-alpha scales. The lower perturbation energy on the
largest scales was not seen in earlier studies, which used a smaller forecast domain. After
the 18h lead time, which was the latest forecast time considered in JW20, the perturbation
energy is indistinguishable between MULTI and LARGE on meso-gamma and meso-beta
scales. However, the increased perturbation energy for LARGE on the meso-alpha scales
persists into the day-two forecast. In terms of reflectivity, MULTI had more ensemble
spread than LARGE at early forecast hours on all spatial scales, while LARGE had more
spread than MULTI after ~8h on the the meso-alpha scale.

The different IC perturbation methods were found to affect the ensemble bias of
simulated reflectivity forecasts. In particular, the areal coverage of meso-gamma and meso-
beta scale objects was over-forecast by MULTI during the first three forecast hours. From
approximately 3 to 24h, MULTI then had less coverage of meso-alpha-scale objects than
LARGE. After 24h, MULTI had more over-forecasting than LARGE for meso-beta-scale
objects for both 35 and 45 dBZ thresholds.

The overall probabilistic forecast skill, after bias correction with probability matching,
was evaluated for both ensembles using the neighborhood maximum ensemble probability.
A significant advantage of MULTI over LARGE in terms of the NMEP skill was found in
the first six forecast hours using a 9 km neighborhood radius. For 9–12h forecasts, a MULTI
advantage on the meso-gamma and meso-beta scales outweighed a LARGE advantage
on meso-alpha scales across a range of neighborhood radii. At the 24-h lead time, MULTI
had an advantage over LARGE for meso-alpha objects only when verified with small
neighborhood radii, suggesting that the small-scale IC perturbations help to improve the
forecast of convective-scale details of large convective systems, even at the one-day lead
time. However, the meso-beta objects are more skillfully forecast with LARGE at this lead
time when verified with larger neighborhood radii, suggesting an improved probabilistic
forecast of the approximate locations and intensity of meso-beta-scale objects in LARGE at
longer forecast ranges.

In general, we can conclude that neither MULTI nor LARGE is unequivocally better
across the range of forecast lead times, spatial scales, and neighborhood radii considered.
MULTI has the advantage of improving probabilistic forecasts of convective-scale details
and short lead-time forecasts, while LARGE has the advantage of a greater large-scale
spread and a better skill of approximate locations and intensities of mesoscale objects at
an ~1 day lead time. It is therefore likely that the optimal initial-condition perturbation
method for large-domain, convection-allowing ensemble forecasts used for both short-
and long-range forecasts should include some combination of the MULTI and LARGE IC
perturbation techniques. Future work will further evaluate the impact of blending the CAE
analysis perturbations with downscaled, global model perturbations, including longer lead
times of 2–3 days. Future work may also consider whether the inclusion of additional
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observation, such as high resolution satellite radiances, affect the relative performance of
MULTI and LARGE.

While this study suggests advantages of MULTI primarily for lead times of up to
approximately 6h and advantages of LARGE primarily for lead times of ~1 day, it should
be considered that the focus of this evaluation was on forecasts of springtime, midlatitude
convection. Given the different dynamics and physics that dominate in other seasons and
other regions (e.g., the tropics or the Arctic) the results may not be generally applicable to
all forecast applications.
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