Updating and Evaluating Anthropogenic Emissions for NOAA’s Global Ensemble Forecast Systems for Aerosols (GEFS-Aerosols): Application of an SO2 Bias-Scaling Method
Abstract
:1. Introduction
2. Methods
2.1. Emission Data: CEDS 2014 and CEDS 2019
2.2. Model Configuration and Experimental Design
2.3. Bias-Scaling Methods
3. Results
3.1. Global Impacts of Updating Anthropogenic Emissions
3.2. Regional Impacts in East Asia and India
4. Discussion
5. Summary and Conclusions
- Evaluations of the model AOD against ICAP, MERRA2 assimilation data, and a suite of satellite data, such as MISR, VIIRS, MODIS, and ground-truth AERONET, showed that the SENS1 model’s performance improved compared to BASE, particularly in East Asia, while SENS2 bias scaling led to a further improvement in model performance.
- The biases against the satellite observations and the ICAP of ensemble simulation data showed a wide range of biases between the references and seasons. The global mean biases varied with reference types by a factor of 3~13 and season by 2~10.
- Seasonally, the global AOD distributions showed that the differences in all the simulations against ICAP, MISR, VIIRS, and MODIS (i.e., the references) were the largest in MAM and the smallest in DJF. The biases against MISR were the least negative among the references, due to the relatively lower underpredictions against MISR over the oceans. The modeled AOD biases against both VIIRS and MODIS had very similar features in their global distributions; however, the modeled AOD had the most negative global mean biases against MODIS.
- The smaller magnitudes of GMB do not always mean better simulations, particularly when the upper and lower bounds of biases have different signs in different domains and are localized in specific regions, such as East Asia.
- AERONET AODs fell between MISR and MODIS AODs. Comparing the simulated AODs with AERONET data, the bias-scaling methods improved the global seasonal Pearson’s correlation (r), Index of Agreement (IOA), and mean bias (MB), except for the global mean biases in MAM, in which the negative regional biases were reduced more than the positive regional biases.
- Regionally, the SO2 bias scaling showed the largest improvement in r, MB, and IOA in East Asia. On the other hand, the model performance in India improved for DJF and SON, but worsened in MAM and JJA. This seasonal contrast effect is due to the bias-scaled reductions in SO2 emissions in India, along with the relatively more significant contributions from the other types of aerosols transported to this region.
- The simple bias-scaling methods work best in the regions where anthropogenic emissions are predominant, and the assimilated AOD speciation (e.g., MERRA2) represents the fractional contribution of aerosol composition well; however, the methodology for scale emissions works less well in regions that experience a large aerosol burden from natural phenomena, such as dust events, biomass burning, and sea salt.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cheewaphongphan, P.; Chatani, S.; Saigusa, N. Exploring Gaps between Bottom-Up and Top-Down Emission Estimates Based on Uncertainties in Multiple Emission Inventories: A Case Study on CH4 Emissions in China. Sustainability 2019, 11, 2054. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Zhang, Q.; Geng, G.; Chen, C.; Shi, Q.; Cui, M.; Lei, Y.; He, K. Changes in China’s anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth Syst. Sci. Data 2021, 13, 2895–2907. [Google Scholar] [CrossRef]
- Holoboff, J. Which is Better—Bottom-Up or Top-Down Emissions Estimates? 2021. Available online: https://processecology.com/articles/which-is-better-bottom-up-or-top-down-emissions-estimates#:~:text=A%20bottom%2Dup%20estimate%20is,in%20a%20bottom%2Dup%20approach (accessed on 1 September 2022).
- Vaughn, T.L.; Bell, C.S.; Pickering, C.L.; Schwietzke, S.; Heath, C.A.; Petron, G.; Zimmerle, D.J.; Schnell, R.C.; Nummedal, D. Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region. Proc. Natl. Acad. Sci. USA 2018, 115, 11712–11717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; et al. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. Available online: https://edgar.jrc.ec.europa.eu/dataset_htap_v3/ (accessed on 1 September 2022). [CrossRef] [Green Version]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J.A.; Monni, S.; Doering, U.; Olivier, J.G.J.; Pagliari, V.; et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 2018, 10, 1987–2013. [Google Scholar] [CrossRef] [Green Version]
- Klimont, Z.; Kupiainen, K.; Heyes, C.; Purohit, P.; Cofala, J.; Rafaj, P.; Borken-Kleefeld, J.; Schöpp, W. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 2017, 17, 8681–8723. [Google Scholar] [CrossRef] [Green Version]
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M.; et al. 2018 Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef] [Green Version]
- McDuffie, E.E.; Smith, S.J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E.A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R.V. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413–3442. Available online: https://github.com/JGCRI/CEDS/ (accessed on 1 September 2022). [CrossRef]
- CEDS Version 2. Available online: https://dtn2.pnl.gov/data/gcam/CEDS_emissions/CEDS_gridded_data_2021-04-21/ (accessed on 1 September 2022).
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Anenberg, S.C.; Griffin, D.; McLinden, C.A.; Lu, Z.; Streets, D.G. Disentangling the impact of the COVID-19 lockdowns on urban NO2 from natural variability. Geophys. Res. Lett. 2020, 47, e2020GL089269. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Liu, F.; Page, A.; Strode, S.A.; Yoshida, Y.; Choi, S.; Zheng, B.; Lamsal, L.N.; Li, C.; Krotkov, N.A.; Eskes, H.; et al. Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Sci. Adv. 2020, 6, eabc2992. [Google Scholar] [CrossRef]
- Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Van Vu, T.; Elliott, R.J.R.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Campbell, P.C.; Tong, D.; Tang, Y.; Baker, B.; Lee, P.; Saylor, R.; Stein, A.; Ma, S.; Lamsal, L.; Qu, Z. Impacts of the COVID-19 economic slowdown on ozone pollution in the U.S. Atmos. Environ. 2021, 264, 118713. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R. How Did Air Pollution Change during the COVID-19 Outbreak in China? Bull. Am. Meteorol. Soc. 2020, 101, E1645–E1652. Available online: https://journals.ametsoc.org/view/journals/bams/101/10/bamsD2001 (accessed on 1 February 2022). [CrossRef]
- Miyazaki, K.; Bowman, K.; Sekiya, T.; Jiang, Z.; Chen, X.; Eskes, H.; Ru, M.; Zhang, Y.; Shindell, D. Air quality response in China linked to the 2019 novel coronavirus (COVID-19) lockdown. Geophys. Res. Lett. 2020, 47, e2020GL089252. [Google Scholar] [CrossRef]
- Xu, J.; Ge, X.; Zhang, X.; Zhao, W.; Zhang, R.; Zhang, Y. COVID-19 impact on the concentration and composition of submicron particulate matter in a typical city of Northwest China. Geophys. Res. Lett. 2020, 47, e2020GL089035. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Tang, Y.; Pagowski, M.; Chai, T.; Pan, L.; Lee, P.; Baker, B.; Kumar, R.; Delle Monache, L.; Tong, D.; Kim, H.-C. A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods. Geosci. Model Dev. 2017, 10, 4743–4758. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Tong, D.Q.; Yang, K.; Lee, P.; Baker, B.; Crawford, A.; Luke, W.; Stein, A.; Campbell, P.C.; Ring, A.; et al. Air quality impacts of the 2018 Mt. Kilauea Volcano eruption in Hawaii: A regional chemical transport model study with satellite-constrained emissions. Atmos. Environ. 2020, 237, 117648. [Google Scholar] [CrossRef]
- Zhang, L.; Montuoro, R.; McKeen, S.A.; Baker, B.; Bhattacharjee, P.S.; Grell, G.A.; Henderson, J.; Pan, L.; Frost, G.J.; McQueen, J.; et al. Development and evaluation of the Aerosol Forecast Member in the National Center for Environment Prediction (NCEP)’s Global Ensemble Forecast System (GEFS-Aerosols v1). Geosci. Model Dev. 2022, 15, 5337–5369. [Google Scholar] [CrossRef]
- Chin, M.; Ginoux, P.; Kinne, S.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Chin, M.; Rood, R.B.; Lin, S.-J.; Muller, J.F.; Thomspon, A.M. Atmospheric sulfur cycle in the global model GOCART: Model description and global properties. J. Geophys. Res. 2000, 105, 24671–24687. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. Available online: https://journals.ametsoc.org/view/journals/clim/30/17/jcli-d-16-0609.1.xml (accessed on 15 January 2022). [CrossRef]
- Lamarque, J.-F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; Mieville, A.; Owen, B.; et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 2010, 10, 7017–7039. [Google Scholar] [CrossRef] [Green Version]
- Black, T.L.; Abeles, J.A.; Blake, B.T.; Jovic, D.; Rogers, E.; Zhang, X.; Aligo, E.A.; Dawson, L.C.; Lin, Y.; Strobach, E.; et al. A limited area modeling capability for the Finite-Volume Cubed- Sphere (FV3) dynamical core and comparison with a global two-way nest. J. Adv. Model. Earth Sys. 2021, 13, e2021MS002483. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Hou, D.; Fu, B.; Li, W.; Guan, H.; Sinsky, E.; Kolczynski, W.; Xue, X.; Luo, Y.; et al. The Development of the NCEP Global Ensemble Forecast System Version 12. Weather Forecast. 2022, 37, 1069–1084. Available online: https://journals.ametsoc.org/view/journals/wefo/37/6/WAF-D-21-0112.1.xml (accessed on 1 August 2022).
- Yang, F. Implementation, and evaluation of the NOAA Next Generation Global Prediction System with FV3 Dynamic Core and Advanced Physics. In Proceedings of the 98th American Meteorological Society Conference, Austin, TX, USA, 7–11 June 2018; Available online: https://ams.confex.com/ams/98Annual/webprogram/Paper329963.html (accessed on 15 October 2022).
- Campbell, P.C.; Baker, B.; Tong, D.; Saylor, R. Initial Development of a NOAA Emissions and eXchange Unified System (NEXUS). In Proceedings of the 100th American Meteorological Society Conference, Boston, MA, USA, 12–16 January 2020. [Google Scholar] [CrossRef]
- Lin, H.; Jacob, D.J.; Lundgren, E.W.; Sulprizio, M.P.; Keller, C.A.; Fritz, T.M.; Eastham, S.D.; Emmons, L.K.; Campbell, P.C.; Baker, B.; et al. Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: Application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geosci. Model Dev. 2021, 14, 5487–5506. [Google Scholar] [CrossRef]
- Keller, C.A.; Long, M.S.; Yantosca, R.M.; Da Silva, A.M.; Pawson, S.; Jacob, D.J. HEMCO v1.0: A versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev. 2014, 7, 1409–1417. Available online: www.geosci-model-dev.net/7/1409/2014/ (accessed on 15 February 2021). [CrossRef] [Green Version]
- Yang, Y.; Smith, S.J.; Wang, H.; Lou, S.; Rasch, P.J. Impact of anthropogenic emission injection height uncertainty on global sulfur dioxide and aerosol distribution. J. Geophys. Res. Atmos. 2019, 124, 4812–4826. [Google Scholar] [CrossRef]
- Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M.; et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 2006, 6, 1777–1813. [Google Scholar] [CrossRef] [Green Version]
Run | Emissions System | Anthropogenic Inventory | |||
---|---|---|---|---|---|
SO2 | BC | OC | PM2.5 | ||
BASE | NEXUS | CEDS 2014 | CEDS 2014 | CEDS 2014 | HTAP 2010 |
SENS1 | NEXUS | CEDS 2019 (unscaled) | CEDS 2019 | CEDS 2019 | HTAP 2010 |
SENS2 | NEXUS | CEDS 2019 (scaled) | CEDS 2019 | CEDS 2019 | HTAP 2010 |
Simulation Periods: January–December 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, G.-R.; Baker, B.; Campbell, P.C.; Saylor, R.; Pan, L.; Bhattacharjee, P.S.; Smith, S.J.; Tong, D.; Tang, Y. Updating and Evaluating Anthropogenic Emissions for NOAA’s Global Ensemble Forecast Systems for Aerosols (GEFS-Aerosols): Application of an SO2 Bias-Scaling Method. Atmosphere 2023, 14, 234. https://doi.org/10.3390/atmos14020234
Jeong G-R, Baker B, Campbell PC, Saylor R, Pan L, Bhattacharjee PS, Smith SJ, Tong D, Tang Y. Updating and Evaluating Anthropogenic Emissions for NOAA’s Global Ensemble Forecast Systems for Aerosols (GEFS-Aerosols): Application of an SO2 Bias-Scaling Method. Atmosphere. 2023; 14(2):234. https://doi.org/10.3390/atmos14020234
Chicago/Turabian StyleJeong, Gill-Ran, Barry Baker, Patrick C. Campbell, Rick Saylor, Li Pan, Partha S. Bhattacharjee, Steven J. Smith, Daniel Tong, and Youhua Tang. 2023. "Updating and Evaluating Anthropogenic Emissions for NOAA’s Global Ensemble Forecast Systems for Aerosols (GEFS-Aerosols): Application of an SO2 Bias-Scaling Method" Atmosphere 14, no. 2: 234. https://doi.org/10.3390/atmos14020234
APA StyleJeong, G. -R., Baker, B., Campbell, P. C., Saylor, R., Pan, L., Bhattacharjee, P. S., Smith, S. J., Tong, D., & Tang, Y. (2023). Updating and Evaluating Anthropogenic Emissions for NOAA’s Global Ensemble Forecast Systems for Aerosols (GEFS-Aerosols): Application of an SO2 Bias-Scaling Method. Atmosphere, 14(2), 234. https://doi.org/10.3390/atmos14020234