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Abstract: Bottom-up CH4 emission inventories, which have been developed from statistical analyses
of activity data and country specific emission factors (EFs), have high uncertainty in terms of
the estimations, according to results from top-down inverse model studies. This study aimed
to determine the causes of overestimation in CH4 bottom-up emission inventories across China
by applying parameter variability uncertainty analysis to three sets of CH4 emission inventories
titled PENG, GAINS, and EDGAR. The top three major sources of CH4 emissions in China during
the years 1990–2010, namely, coal mining, livestock, and rice cultivation, were selected for the
investigation. The results of this study confirm the concerns raised by inverse modeling results in
which we found significantly higher bottom-up emissions for the rice cultivation and coal mining
sectors. The largest uncertainties were detected in the rice cultivation estimates and were caused by
variations in the proportions of rice cultivation ecosystems and EFs; specifically, higher rates for both
parameters were used in EDGAR. The coal mining sector was associated with the second highest
level of uncertainty, and this was caused by variations in mining types and EFs, for which rather
consistent parameters were used in EDGAR and GAINS, but values were slightly higher than those
used in PENG. Insignificant differences were detected among the three sets of inventories for the
livestock sector.

Keywords: CH4 emission inventory; anthropogenic sources; bottom up estimation;
uncertainty analysis

1. Introduction

“Two degrees Celsius”, the global temperature target under the Paris Agreement for addressing
the climate change problem, represents a significant challenge for all countries. Methane (CH4),
an abundant greenhouse gas (GHG) in the atmosphere, contributes about 15–20% to anthropogenic
GHGs globally, and its concentrations generally have increased since the pre-industrial period.
Meanwhile, CH4 concentrations stabilized during 1990–2007, but levels have been rapidly increasing
once again since the year 2007. Given the unbalance between sinks and sources, fluctuations of growth
rates remain unclear [1,2].

CH4 emission inventories, which describe CH4 emission amounts, contain important information
that can be used in various perspectives (e.g., political, scientific, and so on). In regard to the political
aspect, such data are necessary to show the current situation and guide strategic efforts to tackle the
problem of climate change within a particular country. This aspect is particularly important for the
Paris Agreement, because emission inventories reflect the efforts of each country toward achieving its
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nationally determined contribution (NDC). In regards to the scientific aspect of emission inventories,
such data are used as inputs in atmospheric modeling studies to obtain a better understanding about
the sources and sinks of CH4 and the mechanisms influencing emissions, which can contribute towards
climate change problem solving. The accuracy of emission inventories is thus very crucial to both of
these endeavors.

There are two different methods that can be used to estimate and validate emissions. One is the
“bottom-up” method, which estimates emissions from statistical analyses of activity data together with
country-specific emission factors. The other is the “top-down” method, which estimates emissions
based on observations. Inverse modeling is a common top-down method, in which numerical
models are used to inversely estimate emissions from observed concentrations. Several inverse
modeling studies have indicated that there are uncertainties in bottom-up CH4 emission inventories [3].
For example, Bergamashi et al. [4] used TM5-4DVAR inverse modeling, together with the observation
data from SCIAMCHY satellite and NOAA, to estimate global CH4 emissions during the 2000s.
Their research reports that global anthropogenic CH4 emissions during that period tended to increase,
with a significantly smaller growth than the trend reported in EDGAR v.4.2. bottom-up emission
inventory. Thompson et al. [5] estimated monthly CH4 emission in East Asia for the years 2000–2011
using atmospheric Bayesian inversion of CH4 mole fraction and stable isotope measurements,
and discovered an overestimation of about 29% in EDGAR 4.2FT, especially in the eastern and
southern regions. Prabir et al. [6] estimated CH4 emissions for 53 land regions globally during
the years 2002–2012 using an atmospheric chemistry transport model named JAMSTEC’s ACTM,
which concluded that there was a higher amount, and higher annual growth rate, of CH4 over East
Asia (mainly China) in EDGAR 4.2FT. Whereas large uncertainties were embedded in these inverse
modeling studies, they indicated possibilities that CH4 emissions in East Asia were overestimated in
the existing bottom-up emission inventories.

It is critically important to identify the causes of differences in bottom-up and top-down estimates
of CH4 emissions in East Asia. However, there are few studies that have successfully identified
causes based on findings from top-down methods. Whereas most inverse modeling studies just
indicate uncertainties in bottom-up estimates, it is critical to link them to causes in such a way that
improvements could be made to bottom-up emission inventories. In fact, differences exist in CH4

emissions even among available bottom-up emission inventories. The discrepancy is in the range
of 332 to 373 Tg for global CH4 emissions [1,6–9], and between 44 and 78 Tg for CH4 emissions in
China [6–10], which is a major CH4 emitter in East Asia. These values demonstrate the high uncertainty
of bottom-up emission inventories even when the same estimation method is used. On the other hand,
such differences among bottom-up emission inventories could be also understood as possibilities to
explain gaps between top-down and bottom-up estimates based on methodologies and data utilized
in some of the existing bottom-up emission inventories.

This study assessed the uncertainty of bottom-up emission inventories based on the findings of
previous inverse modeling studies. We performed an intensive investigation to find the possible causes
of overestimations of bottom-up emission inventories across China, which are implied in all top-down
inverse model studies [4–6]. This was accomplished by examining the values of each parameter used
in the existing sets of inventories together with a parameter variability uncertainty analysis, in order to
assess the consistency of the results among sets of bottom-up inventories. Three sets of bottom-up
CH4 emission inventories consisting of both national and global estimates were used, and these data
have been widely referenced by studies on CH4 emissions and used in atmospheric models.

2. Materials and Methods

2.1. Existing Sets of Emission Inventory Data

This study selected three sets of bottom-up CH4 emission inventories consisting of both national
and global estimates, which have been widely referenced in studies on CH4 emissions and used in
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atmospheric models: (1) A national inventory developed by Sushi Peng et al. (hereafter, referred
to as PENG); this set presents CH4 emissions disaggregated into eight major contributing factors
in China during the years 1980–2010 [11]. (2) The Greenhouse Gas and Air Pollution Interactions
and Synergies for Asia scenario for Evaluating the Climate and Air Quality Impacts of Short-Lived
Pollutants version CLEv5a (hereafter, referred to as GAINS); this model provides data on emissions
and pollutants by country, with data available for 32 provinces since 1990, and continuing until 2030
with five-year intervals [12]. (3) The Emission Database for Global Atmospheric Research version
4.3.2 (hereafter, referred to as EDGAR); this is a global emission inventory that presents CH4 emission
data from 266 countries during the years 1990–2012 [10]. The descriptions of the three data sets of
emission inventories used in this study are summarized in Table 1, and the details are discussed in the
following sections.

2.1.1. PENG

This set of inventory data was developed by Shushi Peng et al. [11]. PENG is a national CH4

emission inventory developed from provincial activity data and emission factors for eight major
anthropogenic sources of CH4 emission in China, including livestock, rice cultivation, biomass
and biofuel burning, coal, oil and gas, fossil fuel combustion, landfills, and wastewater during
the years 1980–2010.

2.1.2. GAINS

The Greenhouse Gas and Air Pollution Interactions and Synergies, or GAINS, is a model that
was developed by the International Institute for Applied System Analysis (IIASA) [12]. This model
provides the amount of emissions in Asia, which is named GAINS_Asia. In the case of China, GAINS
provides sets of GHG and pollutant data by 32 provinces. This study used the Evaluating the Climate
and Air Quality Impacts of Short-Lived Pollutants version v5a current legislation scenario (ECLIPSE
v5a_CLE), which is the latest version of ECLIPSE [13]. In this scenario, sets of CH4 emission data from
eight main anthropogenic sources are provided in five-year intervals from 1990 to 2030. These data
were estimated from activity data referenced mostly in international statistics and emission factors
in which country-specific values were used in combination with the default values of the 2006 IPCC
Guidelines for National Greenhouse Gas Inventories (2006 IPCC GLs) [14].

2.1.3. EDGAR

EDGAR, or the Emission Database for Global Atmospheric Research, was developed as part of a
collaborative research project between the European Commission and the Netherlands Environmental
Assessment Agency, in which the objective was to provide a global data set for ozone precursors
and acidifying agents for use in scientific research and policy-related initiatives [15]. EDGAR v.4.3.2
provides the data for annual GHG emissions and pollutants from seven major sectors (energy, fugitive,
industrial processes, solvents, agriculture, waste, and other categories) and for 266 countries during the
years 1970–2012. EDGAR v.4.3.2 is the latest version of EDGAR, developed from the version 4.2FT by
using more updated activity data from international statistics, and more country-specific technological
processes and emission recovery compared with the previous version EDGAR 4.2FT.
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Table 1. Summary of the details for the three sets of emission inventories used in this study.

Data Set Source Temporal
Resolution

Spatial
Resolution

Study
Coverage Ref.

PENG

8 sectors: rice cultivation, coal mining,
livestock,

municipal solid waste (MSW), wastewater,
oil and gas, biomass and biofuel burning,

fossil fuel combustion.

1980–2010 0.1◦ × 0.1◦ China [11]

GAINS

10 sectors:
Rice cultivation, coal mining, livestock,

MSW, wastewater,
oil and gas, domestic,

fossil fuel combustion, road/off-road
transport,

waste burning.

1990–2030
(5-year

intervals)
0.5◦ × 0.5◦ 83 countries [12,14]

EDGAR

14 sub-sectors:
rice cultivation, coal mining, livestock, MSW,

wastewater, oil and gas,
power, manufacturing, domestic,

road/off-road
transport, industrial processes,

agricultural waste burning, fossil fuel fires.

1970–2012 0.1◦ × 0.1◦ 227
countries [10,16,17]

2.2. Uncertainty Analysis

Uncertainty estimation is an element of a complete emission inventory [7]. It is conducted to
describe the accuracy, precision, and variability of an emission estimation, which can be identified
using statistical analysis. This study applied the elementary effect analysis method together with
the Monte Carlo simulation method, both of which have a statistical basis, to assess parametric
variability uncertainty, which is the uncertainty that occurs from the variation of each parameter used
in calculations among different sets of inventories.

The elementary effect method was originally developed by Morris [18] and explicated by
Campolongo et al. [19]. It is a randomized method that can be used to assess effects on the output
when changes occur to the value of the input parameter. This method is well suited for studies such as
this one, in which there is high variation in the parameter values [19]. In elementary effect analysis,
as presented in Equation (1), two points are selected for the range of each input parameter (y (xi)
and y (xi + ∆)), and each range is divided into three sections equally; then, the method calculates the
change in the output based on randomized number one by one under the range of the input parameter.
This process is repeated until each parameter has changed once, then the mean of the elementary effect
is calculated based on Equation (2). The relevant equations are as follows:

EEi(x) = [y(x1, x2,...,xi−1, xi + ∆, xi+1, . . . , xk)− y(x)]/∆ (1)

µi =
∑r

n=1 EEn

r
(2)

where EE is the elementary effect uncertainty, y is the output (which is the amount of CH4 emission),
xi is the input parameter (which is all parameters related to CH4 emission estimation, including
activity data, emission factor, and emission removal), ∆ is the magnitude of the step, µi is the mean of
the average elementary effect, and r is the number of the input parameter related to CH4 emission
estimation in each sector.

Based on the principles of elementary effect analysis, the range of each input parameter was
defined from the values used in the calculations of the existing inventories. We collected the data used
in the calculations of PENG from Peng et al. [11], the calculations of GAINS from the GAINS-Asia
database [12] and Hoglund-Isaksson [14], and those used in the calculations of EDGAR from two
publications of Janssens-Maenhout et al. [16,17]. The following two types of data were collected: (1)
original data, representing data obtained from the publications/database, and (2) comparable data,
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representing data collected from the references provided in the publications/database. We randomized
the values under this range based on Monte Carlo simulations and assessed the parametric variability
uncertainty based on the principles of the elementary effect analysis presented in Equations (1) and (2).

3. Results

Figure 1 presents the CH4 emission inventory, which focuses on the major contributors during
the years 1990–2010 for PENG, GAINS, and EDGAR:
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Figure 1. a GAINS provides emission data in snapshots of five years, and annual values were obtained
from interpolation. CH4 emission inventory data during the years 1990–2010 compiled from the
existing CH4 inventories: black—all sectors; blue—rice cultivation; green—livestock; orange—coal
mining; grey—minor sources; left y-axel—sectorial CH4; right y-axel—total CH4. (a) PENG; (b) GAINS;
(c) EDGAR.

PENG [11] reports that the amount of CH4 emissions during the years 1980–2010 increased from
24.4 Tg in 1980 to 30.3 Tg in 1990, and reached 44.9 Tg in 2010, meaning that the average annual increase
rate during that period was 2.1%. Until the year 1992, rice cultivation was the major contributor of CH4

emissions, but it was outpaced by livestock emissions during the years 1993–2004. However, livestock
emissions slightly decreased from 2005 to 2010. CH4 from coal mining has increased significantly since
2000, and since the year 2005 onward it has overtaken rice cultivation and livestock to become the
highest emitter.

GAINS [12] reports, the amounts of CH4 emissions since 1990 and will continue until 2030.
Emissions have been rising from 30.8 Tg in 1990, to 50.6 Tg in 2010, with an average annual increase
rate of 2% and an expectation that they will reach 67.4 Tg by 2030. The top three major emitters
were coal mining, livestock, and rice cultivation, sequentially, for all years. GAINS reports that CH4

emissions from coal mining have sharply increased over time, and that since 2000 it has become the
highest emitter, while CH4 emissions from livestock have slightly increased and consistently remained
the second highest emitter since 2000 CH4 emissions from rice cultivation have shown a slight decrease
since the year 1990.

EDGAR [10] reports, CH4 emissions from 1970 to 2012, and a growth from 47.3 Tg in 1990, to 63.2
Tg in 2010, with the average annual growth rate about 1%. During the years 1970–2002, the main
CH4 contributors in China were rice cultivation, livestock, and domestic sources, though wastewater
and the coal mining sector levels were close behind. Fugitive CH4 emissions from coal mining have
increased since 1970, and significantly outpaced those of other sources such as wastewater in the
year 1978 and the residential sector in the year 1989. Presently, CH4 emissions from coal mining have
become the highest contributor of emissions since the year 2003 onward.

These results demonstrate that all inventory sets report similar data, indicating that CH4 emissions
in China tend to continuously rise with different annual growth rates at 2.1%, 2.0%, and 1.0% for
PENG, GAINS, and EDGAR, respectively. Although EDGAR showed the lowest annual growth rate,
the annual amount was significantly higher (i.e., it was 35% and 30% above that of PENG and GAINS,
respectively). Recall that this version of EDGAR (EDGAR v.4.3.2) was developed from more-updated
information compared with the previous version (EDGAR v.4.2FT). Thus, the results of EDGAR v.4.3.2
present lower amounts than EDGAR v.4.2FT by about 6–19%, with significant decreases in the coal
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mining sector (27–39% decrease from the previous version) and moderate decreases in the livestock
sector (0–14% decrease) and rice cultivation sector (0–9% decrease). Meanwhile, there were significant
increases in the residential sector (18–39% increase) and wastewater sector (7–14% increase). EDGAR
v.4.3.2 reports a lower amount than the previous EDGAR (EDGAR 4.2 FT). Even so, their values are
still higher than other bottom-up inventories. This information emphasizes the research results of
Thompson et al. [5] and Prabir et al. [6], both of whom have reported the overestimation of EDGAR
4.2FT in China.

When taking into consideration CH4 emissions by source, all three inventory data sets show that
the main contributors to CH4 emissions were coal mining, livestock, and rice cultivation. These three
activities accounted for about 70–80% of the overall CH4 emissions in China. Before the year 2000,
agricultural activities such as rice cultivation and livestock activities were the main contributors,
but the exact ranking showed some sequential alternations among data sets. After the year 2000,
fugitive emissions from coal mining increased significantly and this source became the highest
emitter, overtaking rice cultivation and livestock activities during the years 2003 and 2005, respectively.
Meanwhile, emissions from rice cultivation were rather stable and tended to show slight decreases.
For the minor sources of CH4 emissions in China, all studies reported similar findings, in that
the minor sources included fugitive emissions from oil and gas, waste (municipal solid waste and
wastewater), residential activities, and residue burning with different rankings. Although, all sets
reported consistency in regards to emission trends, sector magnitudes were significantly different,
as summarized in Table 2. The largest difference was found for rice cultivation, as presented in
Figure 2a, for which EDGAR reported the highest amounts at 80% and 54% difference from GAINS and
PENG, respectively. The second largest difference was found for the coal mining sector, as presented in
Figure 2b, for which GAINS reported the highest amounts at 7% and 24% difference from EDGAR and
PENG, respectively, while EDGAR reported a value about 15% higher than that of PENG. For CH4

from the livestock sector, there were insignificant differences, especially between EDGAR and GAINS,
for which only a 3% difference was detected as presented in Figure 2c.

Table 2. Amounts and difference of CH4 emissions during 1990–2010 among the existing sets of CH4

emission inventories.

Sector CH4 Emission (Tg) % Difference 1

PENG GAINS EDGAR PENG &
GAINS

PENG &
EDGAR

GAINS &
EDGAR

Rice cultivation 7.3–9.9 5.9–6.5 11.9–16.7 20–41 (29) 48–62 (54) 75–87 (80)
Coal mining 6.7–17.7 7.6–22.2 7.3–19.2 12–47 (24) 8–41 (15) 4–14 (7)

Livestock 8.9–11.4 8.1–10.7 8.2–11.8 6–21 (14) 8–25 (15) 1–10 (3)
National (in three sectors) 25.6–36.5 22.3–38.9 32.2–45.1 1–14 (7) 12–23 (18) 15–37 (24)

National (all sectors) 30.3–44.9 30.8–50.7 47.3–63.2 2–12 (7) 31–44 (35) 22–42 (30)
1 % Difference estimates from (max–min/median). % Difference in parentheses means average % difference from
the results during the years 1990–2010.

The parametric variability uncertainty was analyzed in order to identify the causes of the
differences among the results for the three sets of inventories. From the analysis based on the variation
of only activity data parameters (AD), only emission factor parameters (EF), and all parameters related
to emission estimations (All) for the year 2010 in each sector, we found that the rice cultivation sector
had the largest uncertainty, at a value of 106%, because of the variation of all parameters in this
sector (Figure 3). Coal mining ranked second for uncertainty with a maximum uncertainty of 33%,
and livestock had the lowest rank of uncertainty with only 12%. These results demonstrate that
there were large variations in the parameters used to estimate emissions from rice cultivation among
the different sets of inventories. The details of the variation for each parameter are presented in
following section.
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3.1. Assessment of CH4 Emissions from the RICE Cultivation Sector

In the year 2010, the total amount of rice cultivation was about 29.9 million ha, which were
mainly planted in the East region of China. However, during the past 20 years, the rice cultivation
area in China has declined from 33.1 million ha in 1990, with the lowest level at 26.5 million ha in
2003 [20]. The most significant decreases occurred in Gansu, Guangdong, Zhejiang, and Fujiang,
but the plantation area also increased in some provinces including Jiangsu, Heilongjiang, Shandong,
and Anhui [21]. Rice cultivation patterns in China can be classified by seasonality into four types,
namely, early, middle, single-late, and double-late rice, in which middle rice represents the major
cultivation season [22]. Early rice is planted from February to April, and harvested from June to
July. Middle and single-late rice are planted from March to June, and harvested from October to
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November. Double-late rice represents the second round of rice cultivation, and is planted after
harvesting the single-late rice [21]. Rice cultivation patterns in China vary by region because of the
different topography and weather among regions [22]. CH4 emissions from rice cultivations occur
after the anaerobic decomposition of organic material, and are emitted into the atmosphere [23,24];
these emissions can be estimated from the function of the harvested area, plantation period, and
emission factor for different rice cultivation systems, as presented in Equation (3) [25].

CH4 Rice = ∑
i,j,k

(
Ai,j,k × ti,j,k × EFi,j,k

)
(3)

where CH4 Rice is the annual methane emission from rice cultivation, Ai,j,k is the annual harvested area
of rice for i, j, k conditions, ti,j,k represents the cultivation period of rice for i, j, k conditions, EFi,j,k is
a daily emission factor for i, j, k conditions, and i, j, k represent different ecosystems, water regimes,
types of systems, amounts of organic amendments, and other conditions.

Table 3 presents a summary of the values and references used in the existing inventories by
parameter, and further details are as follows.

Table 3. Summary of references, data, and data variability used in the sets of inventories for the rice
cultivation sector.

Parameter PENG GAINS EDGAR Variation

AD

Ai,j,k

Referenced
China Statistical

Yearbook [11]

Referenced
FAO statistics

(FAOSTAT) [14]

Referenced FAO
statistics

(FAOSTAT) [16]
2% to 4%

ti,j,k

Referenced
Yan et al.

(77–110) a [11]

Hoglund-Isaksson’s
assumption
(185) a [14]

Referenced Neue
[17] (83–110) b [27] −140% to 15%

Share of seasonality, i
Referenced

China Statistical
Yearbook [11]

Share of water regime,
j, intermittent flooding

(IR), continuous
flooding (CF)

Referenced
Yan et al.

(66.7:33.3) a [11]

Referenced
IRRI [14]

(40:60) a [12]

Referenced
IRRI [16,17] −80% to 40%

Share of use of OM, k
Referenced

Yan et al.
(50–85%) a [11]

EF (kg/ha/day)

Referenced
Yan et al.

[11]

Referenced
2006 IPCC GLs [14]

Referenced Neue
[17]

IR-OM 0.12–4.51 b [26]
0.65 b [25] 0.6–14.1

(3.4) b [27]

−47% to 72%
IR-W/O OM 0.06–2.69 b [26] −147% to 53%

CF-OM 1.68–6.07 b [26]
1.3 b [25]

12% to 66%
CF-W/O OM 0.84–4.22 b [26] −34% to 49%

a Original data provided in their paper. b Comparable data obtained by tracking from their reference.

Annual harvested area (Ai,j,k): PENG references the annual rice cultivation area by province via
the China Statistical Yearbook [11]. GAINS and EDGAR reference a similar source that uses statistics
from the Food and Agriculture Organization (FAO) [14,16]. By taking into consideration the statistics
from the two references found in the records between the years 1990 and 2010, the difference in values
was found to be about 2% to 4%, respectively.

Cultivation period (ti,j,k): The cultivation period depends on seasonality. PENG references
the study of Yan et al. [26], who used 77, 110–130, and 93 days for early, middle, and late rice,
respectively [11]. GAINS relied on a unique assumption, which assumed a value of 185 days [14].
EDGAR references the study of Neue [17], in which the cultivation period was given in the range of
83–110 days as the minimum and maximum, respectively, and 100 days was given as the median [27].

Rice ecosystem (i,j,k): PENG considers four conditions for rice ecosystems, including (1)
regionality (five regions according to the FAO agricultural ecosystem zoning), (2) seasonality (early,
middle, late), (3) flooding pattern (intermittent flooding (IR) and continuous flooding (CF)), and (4)
use of organic amendments (OM). For the first two conditions, PENG references information from the
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China Statistical Yearbook, while for the third condition, values from Yan et al. [26] at the rate 66.7% and
33% of the total area for IR and CF fields, respectively, were used, with a unique assumption set for the
last condition [11]. GAINS considers only the water regime condition, and data are classified into three
rice ecosystems, namely, continuously flooded, intermittently flooded, and upland fields. For each type
of system, proportions were drawn from the International Rice Research Institute (IRRI) [14], in which
the share between IR and CF is at 40% and 60%, respectively [12]. EDGAR classifies ecosystems as
rainfed, irrigated, deep water, and upland, for which the proportions of each type of system are taken
from the similar references used in GAINS [16]. These findings indicate that GAINS and EDGAR
consider only water regime condition which is the main factor that has a significant influence on the
emissions in rice cultivation [27–30]. However, there use the higher proportion of continuous flood,
in which this condition has the higher EF than intermittent flood conditions.

Emission factor (EFi,j,k): the value of the EF depends on the rice ecosystem considered. PENG
considers four aspects of rice ecosystems—regionality, seasonality, water regime, and fertilizer
use—and so the EFs used in PENG vary in accordance with these rice ecosystem conditions, data on
which were obtained from the study of Yan et al. [11,26]. In that study, zonal/regional EFs are provided
that are disaggregated by cultivation conditions into 36 categories in the unit of mg CH4/m2/h,
for which the range amounts to 0.12–4.51 kg/ha/day for IR fields with OM, and 1.68–6.07 kg/ha/day
for CF fields with OM [26]. GAINS references the default value for the EF from the 2006 IPCC GLs
together with theirits own assumption [14]. The 2006 IPCC GLs provide an EF for the baseline condition
which involves continuous flooding without OM at 1.3 kg/ha/day [25]. GAINS assumes that the EF for
continuous flooding conditions is two times that of intermittent flood conditions [14], so the EF for the
intermittent flood condition is about 0.65 kg/ha/day. In EDGAR, the study of Neue [27] is referenced,
in which the emission flux for irrigated fields in China is given as 0.6–14.1 kg/ha/day (3.4 kg/ha/day
for the median rate) [27]. Thus, it can be seen that the lower range of Neue [27] associates with the EFs
of GAINS for the intermittent conditions, whereas the middle value correlates with (or rather is higher
than) the EFs of GAINS in the case of continuous flooding conditions. By taking into consideration
the EF for the major type of rice ecosystem in China, which is the middle rice type according to the
study of Yan et al. [26], the average regional EF values under this condition are in a range of 0.09–2.81
kg/ha/day for intermittent floods, and 1.26–4.56 kg/ha/day for continuous flooding. EF varies by
zone, as presented in Figure 4, and the highest rate occurs in zone AEZ6B (covering the area of the
Southwest region), while the lowest rate occurs in zone AEZ8 (covering the area of the North region).
Following the conversion of the regional EFs to a national EF by weighting with the provincial paddy
field area found, the national EF rate was found to be about 1.95 kg/ha/day. By comparing these
ranges with the EF rates used in GAINS and EDGAR, we found the national EF was about 33% higher
than the default value of the 2006 IPCC GLs (used in GAINS), whereas it was 74% lower than the
middle rate of Neue [27], which is referenced in EDGAR.

Sustainability 2019, 11, x FOR PEER REVIEW 10 of 18 

with the EFs of GAINS for the intermittent conditions, whereas the middle value correlates with (or 
rather is higher than) the EFs of GAINS in the case of continuous flooding conditions. By taking into 
consideration the EF for the major type of rice ecosystem in China, which is the middle rice type 
according to the study of Yan et al. [26], the average regional EF values under this condition are in a 
range of 0.09–2.81 kg/ha/day for intermittent floods, and 1.26–4.56 kg/ha/day for continuous flooding. 
EF varies by zone, as presented in Figure 4, and the highest rate occurs in zone AEZ6B (covering the 
area of the Southwest region), while the lowest rate occurs in zone AEZ8 (covering the area of the 
North region). Following the conversion of the regional EFs to a national EF by weighting with the 
provincial paddy field area found, the national EF rate was found to be about 1.95 kg/ha/day. By 
comparing these ranges with the EF rates used in GAINS and EDGAR, we found the national EF was 
about 33% higher than the default value of the 2006 IPCC GLs (used in GAINS), whereas it was 74% 
lower than the middle rate of Neue [27], which is referenced in EDGAR. 

As the details of each parameter used in each set of inventories demonstrates, EDGAR reported 
the highest amount of CH4 because of its use of a higher proportion of the main emitter as the 
continuous condition combined with the use of higher-rate EFs compared with those of GAINS and 
PENG. Meanwhile, GAINS used the same share of continuous flooded fields as EDGAR (which was 
26.7% higher than that of PENG), with a lower rate of EFs (which were about half of the EFs of Yan 
et al. in the case of middle rice), and as a result, it reported the lowest amount of CH4 emissions. With 
the variation of all parameters, there was a resulting uncertainty in the emission estimations of about 
85%–106% uncertainty, which amounts to CH4 emissions in the range of 4.3–16.9 Tg. The lower bound 
was obtained from assuming the paddy field area from the China Statistical Yearbook, combined 
with assigning the proportion of continuous flooding at 40% of the total rice cultivation area (as used 
in PENG) with an EF of 1.3 kgCH4/ha, as representative of the continuous flooding conditions, with 
or without OM, as used in GAINS. The upper bound was obtained from the statistical data on the 
paddy field area from the FAO, combined with a designation of 60% continuous flooding and a 
maximum rate of the daily EF (14.1 kgCH4/ha), as referenced in EDGAR. 

 

Zoning 
EF (kg/ha/day) 

PENG GAINS 
EDGAR 

IR CF IR CF 
AEZ8 0.09 1.26 

0.65 1.30 
0.60–14.10 

(3.40) 

AEZ5 0.99 2.89 
AEZ6A 1.03 1.82 
AEZ7 1.80 3.18 

AEZ6B 2.80 4.56 
Average 
national 

1.52 2.80 

 

Figure 4. Emission factors for rice cultivation used in the existing inventory. 

The temporal allocation of emissions data, which only EDGAR considered, showed that the 
highest emissions occurred during February–April (more than one-third of the annual emissions) and 
August–October (about a quarter of the annual emissions), for which the largest share occurred in 
March (16% of annual emissions). The first peak period corresponds with the early rice cultivation 
season, whereas the latter peak period matches the late rice plantation season. This means that the 
temporal distribution from EDGAR represents areas that can plant two or three crops per year, and 
that only the southern and central regions have double harvests [31]. This temporal distribution is 
unrepresentative of the single crop plantation areas, which mainly planted in North, Northeast, and 
Northwest regions. In addition, the peak emissions reported by EDGAR are slightly different from 
the results of Yan et al. [26], who reported that CH4 emissions from rice cultivation start in March and 
are continuous throughout the fallow season, during which emissions will become highest from June 

AEZ8 

AEZ6B AEZ7 

AEZ6A 

AEZ5 

Figure 4. Emission factors for rice cultivation used in the existing inventory.



Sustainability 2019, 11, 2054 10 of 18

As the details of each parameter used in each set of inventories demonstrates, EDGAR reported
the highest amount of CH4 because of its use of a higher proportion of the main emitter as the
continuous condition combined with the use of higher-rate EFs compared with those of GAINS and
PENG. Meanwhile, GAINS used the same share of continuous flooded fields as EDGAR (which was
26.7% higher than that of PENG), with a lower rate of EFs (which were about half of the EFs of Yan et
al. in the case of middle rice), and as a result, it reported the lowest amount of CH4 emissions. With the
variation of all parameters, there was a resulting uncertainty in the emission estimations of about
85%–106% uncertainty, which amounts to CH4 emissions in the range of 4.3–16.9 Tg. The lower bound
was obtained from assuming the paddy field area from the China Statistical Yearbook, combined with
assigning the proportion of continuous flooding at 40% of the total rice cultivation area (as used in
PENG) with an EF of 1.3 kgCH4/ha, as representative of the continuous flooding conditions, with or
without OM, as used in GAINS. The upper bound was obtained from the statistical data on the paddy
field area from the FAO, combined with a designation of 60% continuous flooding and a maximum
rate of the daily EF (14.1 kgCH4/ha), as referenced in EDGAR.

The temporal allocation of emissions data, which only EDGAR considered, showed that the
highest emissions occurred during February–April (more than one-third of the annual emissions) and
August–October (about a quarter of the annual emissions), for which the largest share occurred in
March (16% of annual emissions). The first peak period corresponds with the early rice cultivation
season, whereas the latter peak period matches the late rice plantation season. This means that the
temporal distribution from EDGAR represents areas that can plant two or three crops per year, and
that only the southern and central regions have double harvests [31]. This temporal distribution is
unrepresentative of the single crop plantation areas, which mainly planted in North, Northeast, and
Northwest regions. In addition, the peak emissions reported by EDGAR are slightly different from the
results of Yan et al. [26], who reported that CH4 emissions from rice cultivation start in March and are
continuous throughout the fallow season, during which emissions will become highest from June to
July (about 40% of the annual emissions) in consideration of the seasonality of rice as early, middle,
and late rice cultivation periods [26].

3.2. Assessment of CH4 Emissions from the Coal Mining Sector

China is one of the world’s major coal producers [32]. According to records of the US Energy
Information Administration (EIA), about 12,000 coal mines are in operation in China (as of 2014),
and these are mainly bituminous coal operations, with only some involving anthracite and lignite.
These mines are located in 28 provinces, particularly in the North region, except for the anthracite mines,
which are mostly found in the Central region [32]. About 17% of the mines belong to state-owned
coal mine groups (which accounts for a total of 61% of coal production), and 83% of mines are owned
by villages and towns (which account for about 39% of coal production) [33]. Most of the mines in
China are underground mines, and there are only a few open pit mines [33]. Both types of active
coal mines have emissions from four sources, including mining (ventilation and degasification), post
mining (handling, transport, and storage), oxidation, and uncontrolled combustion (the fires that
occur from the heat), which are significantly higher in underground mines [34]. Mining and post
mining activities are the major sources of CH4 emissions, for which the quantity mainly depends on
the ranking of coal and the mining depth [35,36]. The 2006 IPCC GLs [34] provide the principles for
estimating fugitive emissions from coal mining for Tier 1 and Tier 2 levels, as presented in Equation
(4), and these emissions are based on the amount of raw coal production by mine types, the EF for
each process and each mine, and the CH4 recovery.

Ei,j =
(

ADi × EFi,j
)
− CH4 rec (4)

where Ei,j is the sum of emissions from all mines (i) for all processes (j), ADi is the amount of raw coal
production by mine type i (surface (S)/underground (UG)), EFi,j is the CH4 emission factor by mine
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type i and process j (mining/post mining), and CH4rec is the CH4 recovered and utilized for energy
production or flared.

Table 4 summarizes the values and references for each parameter used for coal mining emission
estimations in the existing inventories, with further details are provided below.

Amount of coal production by mine type (ADi): PENG uses the amount of coal production at the
provincial level obtained from the China Statistical Yearbook, and disaggregates coal production into
underground and surface mines at rates of 95% and 5%, respectively, for which data were obtained
from the provincial average [11]. GAINS uses data at the national level obtained from the World
Energy Outlook of the International Energy Agency (IEA-WEO), which assumes all coal is from
underground mining [14]. EDGAR uses the amount of coal production from the IEA and disaggregates
data into surface and underground mines based on information from the World Coal Association [16].
From this information, the variation of activity data occurred from two points—the total amount of
coal production, and the share of mine types. In regard to the amount of coal, two references are used
(the China Statistical Yearbook and the IEA). Both references provide consistent information, in which
there is only a 0–5% difference for the overall amount of coal production during the years 1990–2010.
This variation arose from the unit conversion process. The China Statistical Yearbook provides the
amount of coal production in units of coal equivalents (Coe) [37], while the IEA provides two units,
namely, ton of oil equivalents (toe) and heating values (PJ) [38]. Regarding share of mine types, there
is a 5% difference in underground mines, for which PENG assumed the lower share, and a 100%
difference in surface mines, for which only PENG assigns a rate.

Table 4. Summary of references, data, and data variability used in sets of inventories for the coal
mining sector.

Parameter PENG GAINS EDGAR Variation

AD
Coal

production

Referenced
China Statistical

Yearbook
[11]

Referenced
IEA-WEO [14]

Referenced
IEA [16,17] 0% to 5%

Share of
underground
(UG): surface

(S) mines
(%)

Referenced
China Statistical

Yearbook
(95:5) a [11]

Referenced
IEA-WEO

(100:0) a [12,14]

Referenced
World Coal

Association [16]
−100% to 5%

EF
(m3 t−1)

EFUG-Mining
Referenced Zheng et al.

(5.58–20.35) a [11]

Referenced
2006 IPCC GLs
(9.3) a [12,14]

Referenced the lower
bound in EMEP/EEA

[16]
(10.0) b [39]

−79% to 54%

EFUG-post mining

Referenced
2006 IPCC GLs, and

Zheng et al.
(1.18–1.30) a [11]

Referenced
2006 IPCC GLs
(2.5) a [12,14]

Referenced the lower
bound in EMEP/EEA

[16]
(0.9) b [39]

−112% to 31%

EFS-Mining

Referenced
2006 IPCC GLs (2.5) a

[11]
EFS-post mining

Recovery rate
(%)

Referenced Zheng et al.
(3.59–9.26) a [11]

Referenced
USEPA

(12.0) a [14]

Referenced
Cheng et al.
(9.0) a [17]

40% to 87%

a Original data provided in their paper. b Comparable data obtained by tracking from their reference.

Emission factor of underground mining (EFUG-mine): PENG uses seven regional EFs in the range
of 5.58–20.35 m3/t, as summarized in Figure 5, for which the characteristics of mines are identified
as depth and coalbed methane, with reference to Zheng et al. [36]. The high rate (20.35 m3/t) is
assigned to the provinces in the Southwest region, which accounted for about 13% of the total coal
production in 2010, and the low rate (5.58 m3/t) is assigned to the provinces in the North region,
which accounted for about 45% of coal production the same year. With the regional EFs used in
PENG and the regional coal production in the year 2010, the weight average of EF was determined
to be about 8.2 m3/t. GAINS has a value of 9.3 m3/t, which was obtained from modifying the lower
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bound of the default value of the 2006 IPCC GLs and based on information from China University
of Petroleum to be consistent with the characteristics of mines [14]. EDGAR references the lower
bound of the EF from EMEP/EEA [16], for which EMEP also used IPCC guidelines for GHG emissions
as representative values to calculate emissions [39]. This rate was down from the previous version
(EDGAR v.4.2FT), which used the European average EFs in cases of missing data [40], and these were
about two times higher for coal mining in China [35]. The 2006 IPCC guidelines proposed the default
value for underground mining as 10–25 m3/t [34]. Utilizing this information, we can see that the EF
rate referenced in EDGAR is slightly higher than the EF rate used in GAINS and PENG; specifically,
it is higher by about 7% and 17%, respectively. However, with the various mining characteristics of
coal mines in China, the uncertainty of the EF between the regional-level EF (used in PENG) and
country-level EF (used in EDGAR and GAINS) reaches a difference of about −79% to 54%, which is
the result of lower estimations in the Southwest region and an overestimation of the North region,
since the country-level EF is used. These results correlate with the inversion results by Thompson et
al., which found high emissions in Shaanxi [5], a province in the North region.
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Emission factor of post underground mining (EFUG-post mine): PENG uses a rate in the range of
1.18–1.30 m3/t, which was obtained from modifying of the default value of the 2006 IPCC GLs together
with the average weight of coal production [11]. GAINS uses a value of 2.5 m3/t, which was referenced
from the median rate of the 2006 IPCC GLs [14]. EDGAR references the lower bound of the default
value given in the 2006 IPCC GLs [16], for which the rate was set at 0.9 m3/t [34]. The default value of
the 2006 IPCC GLs was in the range of 0.9–4.0 m3/t. These findings demonstrate that the EF used in
PENG is rather close to the lower bound of the IPCC 2006 guidelines, which are referenced in EDGAR,
while the EF rate used in GAINS is rather higher than those used in the other studies.

Emission factor of surface mines—mining (EFS-mine): only PENG considers some of coal
production obtained from surface mines which the proportion of surface mining at 5% of coal
production. PENG uses an EF of surface mines—mining at 2.5 m3/t, which was modified from
the default value of the 2006 IPCC GLs [11].

Emission factor of surface mines—post mining (EFS-mine): information is unclear on the EF of the
surface mines—post mining activity used in PENG. However, the EF for this portion is very small
compared with the mining stage, as the default value from the 2006 IPCC GLs was only 0–0.2 m3/t [34].

The rate of CH4 recovery (CH4 rec) used in each set of inventories: PENG assumes the recovery
rate changed over the years at a rate of 3.59–9.26% using data that were modified based on Zheng
et al. [36], the growth of the economy, and the use of more intensive safety measures [11]. GAINS
references the recovery rate from the USEPA at 12%, and uses a constant rate for all years [14]. EDGAR
references the rate from Cheng et al. at 9.0% [16,17]. This information demonstrates that the recovery
rates used in each set are quite consistent, with GAINS reporting the highest rate, while EDGAR
reports nearly the same rate as PENG for the year 2010.
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As the details of each parameter used in each set of inventories demonstrate, GAINS produces
the highest results due to using the higher proportion of underground mines in conjunction with a
higher EF rate of underground coal-post mining. Meanwhile, EDGAR reports the second highest
findings of CH4 emissions, which are closer to the results from GAINS than from PENG, because of the
closer resemblance in the EF-underground mining between EDGAR and GAINS in which higher rate
than PENG used. PENG has the lowest findings of CH4 emissions, due to using the lower proportion
of underground mine (which is the main emitter of coal mining), combined with the lowest EFs
when converting regional EFs to national EFs (which are equivalent to those of other studies). With
the variation of all parameters, there is an uncertainty of emission estimations of about 10%–33%,
which accounts for CH4 emissions in the range of 16.4–23.0 Tg. The lower bound of emissions was
obtained by assuming the proportion of underground to surface mines at 95–5% (as used in PENG)
and the average-weight regional EFs from PENG, combined with the highest recovery rate at 12%,
as referenced in GAINS. Meanwhile, the upper bound was obtained by including all underground
mines (as used in GAINS and EDGAR), as well as the low EF from the 2006 IPCC GLs and the recovery
rate used in EDGAR.

3.3. Assessment of CH4 Emissions from the Livestock Sector

CH4 emissions from livestock are composed of emissions from fermentation and manure
management, which are related to the digestive processes of ruminant and non-ruminant animals,
as well as the decomposition of animal urine and dung under anaerobic conditions. The amount of
CH4 from livestock depends on several factors, such as the animal type, animal characteristics (age,
sex, weight), animal performance, food intake characteristics (type, quantity, and quality), and so
on [25]. The 2006 IPCC GLs [25] provide the principles for estimating CH4 emissions from livestock in
Tier 1 and Tier 2, as presented in Equation (5), in which the accuracy of the estimation depends upon
the details of the parameters used for EF derivation. For the Tier 1 method, only animal characteristics
and average annual temperatures (for manure management) are considered when determining the EF,
whereas the Tier 2 method determines the EF based on animal and food characteristics to estimate
enteric fermentation emissions and manure and manure system characteristics to estimate manure
management emissions. For the Tier 3 method, more country-specific details are considered, such as
dietary compositions, seasonal variation in animal populations, feed quality, and so on, and these data
are mainly obtained from direct measurements [25].

Ei =
[(

Ni × EFEFi

)
EF +

(
Ni × EFMNi

)
MN

]
− CH4 utilized (5)

where Ei is the sum of emissions from enteric and manure management for all types of animals, Ni is the
number of heads for animal type/sub-type i, EFEFi is the enteric methane emission factor for livestock
type/sub-type i, EFMNi is the manure management emission factor for livestock type/sub-type i, and
CH4 utilized is the amount of biogas utilization.

Table 5 summarizes the values and references used for each parameter for livestock emission
estimations used in the existing inventories, and further details are provided below.
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Table 5. Summary of reference, data, and data variation used among sets of inventories in the
livestock sector.

Parameter PENG GAINS EDGAR Variation

AD Number of animals

Referenced
China Statistical

Yearbook
[11]

Referenced
FAO statistics

[14]

Referenced
FAO statistics

[16]
0.10% to 1.0%

EFFERi
(kg CH4

head−1 year−1)

Referenced various
studies identified
based on animal

characteristics [11]

Referenced UNFCCC
and 2006 IPCC GLs

[14]

Referenced
2006 IPCC GLs

[16]

Dairy cattle 46–64 (54) a [11] 56 a [12] 68 b [25]
−3.7% to

25.9%c

Non-dairy cattle 39–53 (53) a [11] 44 a [12] 47 b [25] −6.8% to 0%c

Buffalo 47–62 (57) a [11] 57 a [12] 55 b [25] 0% to 3.5%c

Sheep 5–7 (5) a [11] 5 a [12] 5 b [25] 0%c

Goat 4–6 (4) a [11] - 5 b [25] -25%c

Swine 1 a [11] - 1 b [25] 0%c

EFMMi
(kg CH4

head−1 year−1)

Referenced various
studies identified

based on the provincial
temperature [11]

Referenced
2006 IPCC GLs

identified based on the
regional temperature

[14]

Referenced
2006 IPCC GLs

identified based on
zoning temperatures

[16,17]
Dairy cattle 9–26 (18) a [11] 16 a [12]

-

8.6%
Non-dairy cattle 1 a [11] 1 a [12] 0%

Buffalo 1–2 (1.5) a [11] 2 a [12] −33.3%
Sheep 0.10–0.15 (0.13) a [11] 0.16 a [12] −28%
Goat 0.11–0.17 a [11] -

Swine 2–5 (4) a [11] -

% Recovery
Referenced

Feng Y. et al. and Yin
(10–25) a [11]

Referenced
An et al.

(0) a [12,14]
- -

a Original data provided in their paper, in which the number in parentheses is the base condition. b Comparable
data obtained by tracking from their reference. c Variation estimates from the difference of the value from each
study under the cases of typical animal characteristics.

Number of animals (Ni): PENG estimates emissions for six types of animals (dairy cattle, nondairy
cattle, buffalo, sheep, goat, and swine), in which the number of animals at the end of the year is
referenced by province from the China Statistical Yearbook. These data consider slaughtered and live
animals in which details on sex, age, and manure characteristics are provided [11]. GAINS estimates
emissions for eight types of animals (the same as above plus camels and horses) by referencing FAO
statistics (FAOSTAT), which take into consideration detailed information for dairy cattle [14]. EDGAR
estimates emissions for 11 types of animals (the same as GAINS plus mules, assess, and poultry)
by referencing FAOSTAT [16]. By taking into consideration statistics for the total heads of cattle
and buffalo, which are the major types of large animals in the China Statistical Yearbook and
FAOSTAT, we found that the numbers from the two statistics were rather consistent, with only a
0.1%–1% difference.

Emission factor of enteric fermentation
(
EFEFi

)
: PENG computes EFs disaggregated into three

categories, namely, mature females, young, and others, by using average values from previous studies
including the default value in the 1996 IPCC GLs and the 2006 IPCC GLs [11]. GAINS uses the
default value from the country report submitted to the United Nations Framework Convention on
Climate Change (UNFCCC) together with the default value of the 2006 IPCC GLs, for which data were
identified by animal type, with detailed information provided for dairy cows and adjustments to the
EF based on milk production [12,14]. EDGAR references the default value of the 2006 IPCC GLs, which
considers the country-specific milk yield for dairy cattle and carcass weight for non-dairy cattle [16,17].
By taking into consideration the rate of the EF for dairy cattle, non-dairy cattle, and buffalo (which
are the major sources of livestock emissions) under the same animal characteristics in each study,
we found that the rates had slight differences. The EF of dairy cattle from the 2006 IPCC GLs used in
EDGAR was slightly higher than the EFs used in GAINS and PENG. The EF of non-dairy cattle from
the 2006 IPCC GLs used in EDGAR was in the range between GAINS and PENG. The EF of buffalo
from the 2006 IPCC GLs used in EDGAR is rather lower than the rate in PENG.
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Emission factor of manure management
(
EFMNi

)
: PENG uses the default value of the 2006 IPCC

GLs, which identified the average annual temperature rate by province [11]. GAINS modifies the
default value of the 2006 IPCC GLs based on the average national temperature [14], for which the
EF, at a temperature of 18 ◦C, is rather close to the rate that PENG identifies for provinces in the East
and Central regions. EDGAR references the default value of the 2006 IPCC GLs by using zoning
temperatures [17].

CH4 utilization (CH4 utilized): methane from manure management is widely used in the form
of biogas. PENG references the study of Feng et al. [41], along with the number of household
bio-digesters, to quantify the amount of biogas. It assumes the proportion of biogas accounted for by
manure management under three scenarios to be in the range of 10%–25%, based on Yin [42]. GAINS
considers three scales of anaerobic digestion plants, including farm, household, and community
scales [14]. However, GAINS identifies the non-utilization of biogas in the case of China, based on the
information of An et al. [43]. It also notes the intensity of labor costs to operate digester systems, which
are rather impossible to implement in certain countries that have low average wage rates in agriculture
(including China) [9,14]. There is no statement about the utilization of biogas reported in EDGAR.

As the details for each parameter used in each set of inventories show, all sets used a similar basis
in terms of IPCC data, with some different details for activity data, which led to different EF rates being
used. From the variation of all parameters, the amount of CH4 can be expected to be about 10.5–12.0
Tg, or 0.002%–12% parametric variability uncertainty. The upper bound was obtained by using the
default enteric EF from the 2006 IPCC GLs for dairy cattle (as used in EDGAR), and from PENG for
non-dairy cattle and buffalo, along with the EF of manure management from PENG. The lower bound
was obtained using the default enteric EF from PENG for dairy cattle, and the default value of the 2006
IPCC GLs for the rest of the activities. The often low uncertainty can be attributed to the proximity
of values used in each of the data sets, which resulted in small differences in the results among the
existing inventories.

4. Conclusions

This study aimed to investigate the uncertainty of bottom-up emission estimations, as implied
in the inverse modeling results, by using parameter variability uncertainty analysis. Three sets of
inventories were considered in this study, namely, one that covered the national level of China called
PENG, and two remarking on the international level that also provided data for China called GAINS
and EDGAR. Based on the parameter variability uncertainty analysis in the main contributor sectors,
we found that the largest uncertainty occurred in the rice cultivation sector, followed by the coal
mining sector and livestock sector. By taking into consideration the causes of the uncertainties by
sector, we found that the uncertainty in the rice cultivation sector came from the differences in the
proportion of the water regime used in combination with the variation of EFs specified for each rice
ecosystem. The higher share of continuously flooding land, along with the higher EF rates used in
EDGAR, were key reasons why the results of EDGAR were higher compared to those of the other
inventory sets. The higher share of continuously flooding fields together with the lower EFs for all
ecosystems used in GAINS led to GAINS having the lowest result of emissions. For coal mining,
the uncertainty of emission estimates was mainly caused by the variation of EFs, which were rather
lower rate in PENG either of the EFs of mining or post mining for underground (UG) mines. The higher
share of underground mines along with the higher EFs used in GAINS, especially for underground
post mining, were the main reasons for it having the highest results. EDGAR produced results rather
close to those of GAINS due to similarities in the assumption of the activity data and similar EFs.
Less uncertainty was found for the livestock sector, but some differences were caused by the details
included in the activity data among the different sets of inventories.

Results of this study imply that overestimations of CH4 emissions in China, as inferred by inverse
modeling studies, are due to uncertainties in emission estimates, particularly in regard to emission
factors for the rice cultivation and coal mining sectors. However, it is currently not easy to determine
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which factor is more influential. There should be differences in spatial and temporal variations of
emissions in these sectors. If more detailed information in terms of finer spatial and temporal variations
in emissions can be derived from inverse modeling, these data would be quite useful for obtaining a
better understanding of the influencing factors.

There are numerous studies that apply bottom-up and top-down methods for emission estimates.
Presently, there is an urgent need to obtain deep understandings on variations in such data for
establishing better emission inventories. While an investigation like this study is not sophisticated,
the approach can be useful for validating and improving emission estimates. Such research will lead
to more confidence about NDC achievements and progress toward sustainable development.
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