Research on the Spatial Effects of Green Process Innovation, Environmental Regulation, and Precipitation on Environmental Air Pollution
Abstract
:1. Introduction
2. Literature Review
2.1. Green Process Innovation (GPI)
2.2. Technological Innovation and Environmental Pollution
2.3. Environmental Regulation and Environmental Pollution
3. Methods and Materials
3.1. Methods
3.1.1. Spatial Autoregressive Model
3.1.2. Space Durbin Model
3.2. Variable Selection and Description
3.2.1. Interpreted Variables
3.2.2. Core Explanatory Variables
3.2.3. Control Variables
3.3. Data Sources and Descriptive Analysis of Variables
4. Results and Discussion
4.1. Multicollinearity and Spatial Autocorrelation Test
4.1.1. Multicollinearity Test of Core Explanatory Variables
4.1.2. Spatial Autocorrelation Test of Core Explanatory Variables
4.2. Spatial Autoregressive Analysis Results and Discussion
4.3. Spatial Durbin Model Analysis Results and Discussion
4.4. Spatial Durbin Model Effect Decomposition Results and Discussion
5. Conclusions and Policy Implications
5.1. Conclusions
5.1.1. GPI Is Conducive to Significantly Reducing the Emissions of SO2 and PM2.5
5.1.2. The Development of Pollution-Intensive Industries Is an Important Source of PM2.5 and SO2, with Significant Spatial Spillover Effects
5.1.3. The Strengthening of Environmental Regulation Leads to a Reduction in Domestic Pollution but Also Leads to the Transfer of Industrial Pollution
5.1.4. Precipitation Is Conducive to Reducing the Concentration of Dust and Haze Pollutants in the Air
5.2. Policy Implications
5.2.1. Developing Differentiated Environmental Policies for Different GPI Activities
5.2.2. Effectively Strengthen GPI
5.2.3. Systematic Construction of a Joint Prevention and Control System for Regional Air Pollution
5.2.4. Increasing the Construction of Artificial Wetlands in Areas with Serious Air Pollution
5.2.5. Scientifically Plan the Coordinated Development of Industry, Technology, and the Environment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y. Study on the relationship between green process innovation and financial performance in manufacturing industry. J. Econ. Res. 2020, 16, 63–64. [Google Scholar]
- Irwin, A.; Hooper, P.D. Clean technology, successful innovation and the greening of industry: A case-study analysis. Bus. Strategy Environ. 1992, 1, 1–11. [Google Scholar] [CrossRef]
- Sananci Özer, H. A review of the literature on process innovation in remanufacturing. Int. Rev. Manag. Mark. 2012, 2, 139–155. [Google Scholar]
- Cheng, C.C.J.; Yang, C.; Sheu, C. The link between eco-innovation and business performance: A Taiwanese industry context. J. Clean. Prod. 2014, 64, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Urmila, M.D.; Yogendra, N.S. Green process design, green energy, and sustainability: A systems analysis perspective. Comput. Chem. Eng. 2010, 34, 1348–1355. [Google Scholar] [CrossRef]
- Bi, K.; Yang, C.; Huang, P. Regional difference and influencing factors of innovation performance of green process innovation in China. Chin. Ind. Econ. 2013, 307, 57–69. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Li, J.; Wang, Z. Green Process Innovation, Green Product Innovation and Its Economic Performance Improvement Paths: A Survey and Structural Model. J. Environ. Manag. 2021, 297, 113282. [Google Scholar] [CrossRef]
- Jin, X.; Guo, R.; Chen, B.; Shao, J. How can green process innovation enhance firm performance?—Moderating effects of multiple mediators and organizational redundancy based on intellectual capital. Sci. Technol. Manag. Res. 2022, 42, 221–228. [Google Scholar]
- Grossman, G.; Krueger, A. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Ju, Q.; Wang, C.; Fang, Y. Green technological innovation: A strategic study based on corporate environmental responsibility. Sci. Technol. Manag. Res. 2008, 28, 9–12. [Google Scholar]
- Zhou, Y. Research on the impact of technological innovation on environmental pollution. Small Medium Enterp. Manag. Technol. 2022, 31, 124–126. [Google Scholar]
- Lin, S.; Lin, R. Research on the effect of heterogeneous industrial agglomeration on environmental pollution—A test based on the mediating effect of technological innovation. J. Xi’an Univ. Pet. 2022, 31, 1–10. [Google Scholar]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is free trade good for the environment. Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Yang, F. Impact of technology advance on Carbon Dioxide emission in China. Stat. Res. 2010, 7, 36–44. [Google Scholar]
- Huang, J.; Wang, M. Technological innovation, industrial agglomeration and environmental pollution. J. Shanxi Financ. Econ. Univ. 2016, 9, 50–61. [Google Scholar]
- He, X.; Zhang, Y. Technology progress, energy save and emission reduce and development pattern transformation—Empirical investigation based on 36 industries in China. Quants Technol. Econ. Res. 2012, 29, 19–33. [Google Scholar] [CrossRef]
- Panayoutou, T. Demystifying the environment Kuznets Curve: Turning a black box into a policy tool. Environ. Dev. Econ. 1997, 2, 465–484. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Guo, Y.; Liu, J. Environmental regulation, foreign direct investment and environmental pollution—An empirical analysis based on panel data of Chinese cities. Econ. Issues 2022, 44, 45–52. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Liu, G. An empirical study on the relationship between environmental regulation, green innovation and environmental pollution. J. Manag. 2022, 19, 892–900+927. [Google Scholar]
- William, R. What Causes Industry Agglomeration? Evidence from Coagglomeration Patterns. Am. Econ Rev. 2010, 22, 1195–1213. [Google Scholar]
- Jia, R.; Zhao, D. Modeling performance of industrial pollution control: Empirical study from the perspective of environmental regulation. Syst. Eng. 2012, 30, 1–9. [Google Scholar]
- Wang, H.; Wu, X. Bayesian estimation of coefficient variables and error terms in spatial autoregressive models. J. Hefei Univ. Technol. 2021, 44, 1291–1296. [Google Scholar]
- Zhang, Q. An empirical study of environmental regulations influence on green technology innovation—Based on different regulation policies and 30 provinces data in China. Ind. Technol. Econ. 2015, 34, 10–18. [Google Scholar]
- Lu, X.; Bai, T. How can green technology innovation effectively reduce haze pollution? Chin. Soft Sci. 2020, 37, 174–182+191. [Google Scholar]
- Jin, T.; Zhao, D. The impact of industrial structure evolution on industrial sulfur dioxide emissions in Hebei Province. Ind. Technol. Forum 2022, 21, 49–51. [Google Scholar]
- Li, L.; Sun, J.; Jiang, J. Assessing the sensitivity of Chinese provinces to the interaction of environmental regulation strategies. Chin. Popul. Resour. Environ. 2021, 31, 49–62. [Google Scholar]
- Ye, C.; Zhang, Z. Spatial spillover effects of industrial restructuring on pollution abatement--Estimation based on the spatial Durbin model. Ecol. Econ. 2021, 37, 178–184. [Google Scholar]
- Hu, M. The threshold effect of environmental regulations on sulfur dioxide emissions. Land Nat. Resour. Res. 2022, 58–60. [Google Scholar] [CrossRef]
- He, Z.; Guo, Q.; Liu, J.; Zhang, Y.; Liu, J.; Ding, H. Spatial and temporal variability of air pollution in Hebei Province and its influencing factors. J. Nat. Resour. 2021, 36, 411–419. [Google Scholar]
- Lu, L.; Li, S. Spatial and temporal evolution characteristics of pollution-intensive industries in the Yellow River Basin and their influencing factors. Ecol. Econ. 2023, 1–16. [Google Scholar]
Variables | Number of Samples | Mean Value | Standard Error | Minimum Value | Maximum Value | |
---|---|---|---|---|---|---|
Interpreted Variables | ||||||
SO2 | Amount of Sulfur Dioxide Emissions(tons) | 558 | 66.66 | 44.96 | 0.1 | 200.2 |
PM2.5 | Haze Pollution Level (μg/m3) | 558 | 38.106 | 16.348 | 4.7 | 84.3 |
Dust | Emission of Dust (million tons) | 558 | 37.96 | 29.65 | 0.1 | 179.77 |
Core explanatory Variables | ||||||
ERI | Environmental Regulation: Investment in environmental management of air pollution (billion yuan)/GDP (billion yuan) | 527 | 0.0017 | 0.0015 | 0 | 0.0115 |
GPI | Green Process Innovation (RMB million) | 527 | 26.764 | 35.963 | 0 | 230.35 |
Epc | Precipitation: average annual precipitation (mm) | 572 | 911.64 | 508.77 | 149 | 2393.706 |
IDI | Development Index of Pollution-intensive Industries: Average of industrial sales value by polluting industry | 527 | 0 | 1.000 | −1.638 | 230 |
Control Variables | ||||||
ins | Industrial Structure: Value added of secondary industry (million yuan)/Gross regional product (million yuan) | 572 | 0.457 | 0.083 | 0.190 | 0.615 |
pgdp | Level of Economic Development: GDP per capita (RMB) | 527 | 1.480 | 1.195 | 0.266 | 7.594 |
parc | Car Ownership Per Capita: number of people (10,000)/area (10,000 km2) | 527 | 0.118 | 0.099 | 0.009 | 0.498 |
pen | Population Density: number of cars (10,000)/population (10,000) | 527 | 4.383 | 0.617 | 0.021 | 38.265 |
ene | Energy Efficiency: Electricity consumption (billion kWh)/GDP (billion RMB) | 527 | 0.131 | 0.086 | 0.037 | 0.587 |
Dimension | Eigenvalue | Conditional Index | Variance Ratio | ||||
---|---|---|---|---|---|---|---|
Constant | Green Process Innovation | Environmental Regulation Intensity | Self-Cleaning Capacity | Industry Development Index | |||
1 | 0.295 | 1.000 | 0.01 | 0.01 | 0.02 | 0.02 | 0.00 |
2 | 1.473 | 1.415 | 0.00 | 0.02 | 0.03 | 0.00 | 0.10 |
3 | 0.405 | 2.700 | 0.00 | 0.00 | 0.45 | 0.20 | 0.02 |
4 | 0.098 | 5.481 | 0.02 | 0.78 | 0.21 | 0.31 | 0.73 |
5 | 0.074 | 6.300 | 0.97 | 0.18 | 0.29 | 0.47 | 0.14 |
The Emission of SO2 (ton) | Dust Pollutants (10,000 tons) | Haze Pollutants | |
---|---|---|---|
2000 | −0.902 | 0.122 | 0385 *** |
2001 | −0.993 | 0.120 | 0.378 *** |
2002 | 0.169 * | 0.099 | 0.371 *** |
2003 | 0.192 ** | 0.114 * | 0.362 *** |
2004 | 0.373 ** | 0.284 *** | 0.355 *** |
2005 | 0.219 ** | 0.325 *** | 0.363 *** |
2006 | 0.217 ** | 0.370 *** | 0.387 *** |
2007 | 0.216 ** | 0.385 *** | 0.379 *** |
2008 | 0.215 ** | 0.401 *** | 0.373 *** |
2009 | 0.208 ** | 0.382 *** | 0.382 *** |
2010 | 0.200 ** | 0.353 *** | 0.386 *** |
2011 | 0.231 ** | 0.362 *** | 0.392 *** |
2012 | 0.262 *** | 0.352 *** | 0.400 *** |
2013 | 0.257 *** | 0.344 *** | 0.407 *** |
2014 | 0.251 ** | 0.375 *** | 0.395 *** |
2015 | 0.200 ** | 0.441 *** | 0.391 *** |
2016 | 0.182 ** | 0.308 ** | 0.389 *** |
2017 | 0.135 * | 0.250 ** | 0.384 *** |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
SO2 | SO2 | Dust | Dust | PM2.5 | PM2.5 | |
Main | ||||||
GPI | −0.125 *** | −0.124 *** | 0.198 *** | 0.246 *** | −0.101 *** | −0.089 *** |
0.029 | 0.031 | 0.071 | 0.077 | 0.025 | 0.027 | |
ERI | 0.021 | 0.021 | 0.045 | 0.040 | 0.002 | 0.001 |
0.018 | 0.018 | 0.043 | 0.043 | 0.016 | 0.015 | |
EPC | 0.018 | 0.019 | −0.117 | −0.089 | −0.023 | −0.016 |
0.037 | 0.038 | 0.090 | 0.092 | 0.032 | 0.033 | |
ins | 0.084 *** | 0.084 *** | −0.036 | −0.033 | 0.002 | 0.004 |
0.025 | 0.025 | 0.062 | 0.062 | 0.022 | 0.022 | |
pgdp | 0.155 *** | 0.155 *** | −0.126 | −0.112 | 0.128 *** | 0.132 *** |
0.058 | 0.058 | 0.139 | 0.139 | 0.050 | 0.050 | |
parc | −0.073 | −0.073 | 0.272 ** | 0.261 ** | 0.080 * | 0.083 ** |
0.051 | 0.051 | 0.117 | 0.117 | 0.042 | 0.042 | |
pen | −0.199 | −0.200 | 0.116 | 0.093 | 0.262 *** | 0.257 *** |
0.104 | 0.104 | 0.253 | 0.253 | 0.090 | 0.090 | |
ene | 0.038 | 0.038 | 0.208 ** | 0.208 ** | 0.041 | 0.041 |
0.037 | 0.037 | 0.090 | 0.090 | 0.032 | 0.032 | |
IDI | 0.092 *** | 0.089 ** | 0.363 *** | 0.272 *** | 0.115 *** | 0.142 *** |
0.033 | 0.041 | 0.081 | 0.100 | 0.029 | 0.036 | |
IDI*EPC | −0.006 | −0.148 | −0.040 | |||
0.037 | 0.093 | 0.032 | ||||
Spatial | ||||||
rho | 0.683 *** | 0.682 *** | 0.571 *** | 0.555 *** | 0.805 *** | 0.806 *** |
(0.036) | (0.036) | (0.045) | (0.046) | (0.030) | (0.030) | |
Variance | ||||||
sigma2_e | 0.258 *** | 0.258 *** | 0.630 *** | 0.630 *** | 0.225 | 0.224 *** |
(0.008) | (0.036) | (0.020) | (0.046) | (0.007) | (0.007) | |
N | 530 | 530 | 530 | 530 | 530 | 530 |
With_R2 | 0.186 | 0.190 | 0.170 | 0.169 | 0.149 | 0.148 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
SO2 | SO2 | Dust | Dust | PM2.5 | PM2.5 | |
Main | ||||||
GPI | −0.170 *** | −0.162 *** | 0.214 ** | 0.170 ** | −0.122 *** | −0.109 *** |
0.034 | 0.036 | 0.084 | 0.087 | 0.030 | 0.032 | |
ERI | 0.018 | 0.017 | 0.049 | 0.038 | 0.001 | 0.000 |
0.017 | 0.017 | 0.043 | 0.042 | 0.015 | 0.015 | |
EPC | 0.045 | 0.047 | −0.201 * | −0.218 ** | 0.024 | 0.028 |
0.046 | 0.046 | 0.113 | 0.111 | 0.040 | 0.040 | |
ins | 0.050 * | 0.057 ** | −0.095 | −0.071 | 0.034 | 0.037 |
0.027 | 0.027 | 0.067 | 0.066 | 0.024 | 0.024 | |
pgdp | 0.142 ** | 0.158 *** | −0.203 | −0.096 | 0.153 *** | 0.159 *** |
0.059 | 0.059 | 0.145 | 0.143 | 0.052 | 0.052 | |
parc | 0.033 | 0.024 | 0.269 ** | 0.208 ** | −0.020 | −0.023 |
0.056 | 0.056 | 0.137 | 0.135 | 0.049 | 0.049 | |
pen | 0.302 *** | 0.311 *** | 0.156 | 0.120 | 0.199 ** | 0.188 ** |
0.105 | 0.105 | 0.258 | 0.254 | 0.092 | 0.092 | |
ene | −0.106 *** | −0.118 *** | 0.148 ** | 0.230 ** | 0.012 | 0.015 |
0.040 | 0.041 | 0.098 | 0.097 | 0.035 | 0.035 | |
IDI | 0.105 *** | 0.093 * | 0.201 ** | 0.386 *** | 0.166 *** | 0.196 *** |
0.039 | 0.050 | 0.096 | 0.122 | 0.034 | 0.044 | |
IDI*EPC | −0.022 | 0.243 ** | −0.047 | |||
0.048 | 0.115 | 0.042 | ||||
Wx | ||||||
GPI | −0.063 | −0.037 | −0.042 | 0.266 * | −0.067 | −0.060 |
0.060 | 0.063 | 0.150 | 0.158 | 0.053 | 0.056 | |
ERI | 0.115 *** | 0.106 *** | −0.184 ** | −0.254 *** | 0.073 ** | 0.067 * |
0.039 | 0.039 | 0.094 | 0.094 | 0.035 | 0.035 | |
EPC | −0.107 | −0.069 | 0.194 | 0.436 ** | −0.135 * | −0.117 * |
0.087 | 0.089 | 0.214 | 0.215 | 0.077 | 0.078 | |
ins | 0.012 | 0.023 | −0.743 *** | −0.785 *** | −0.074 | −0.066 |
0.065 | 0.065 | 0.161 | 0.159 | 0.057 | 0.057 | |
pgdp | 0.577 *** | 0.643 *** | 1.403 *** | 1.722 *** | 0.254 | 0.286 * |
0.188 | 0.190 | 0.455 | 0.452 | 0.162 | 0.163 | |
parc | −0.581 *** | −0.616 *** | −1.241 *** | −1.438 *** | −0.208 * | −0.217 * |
0.147 | 0.148 | 0.352 | 0.346 | 0.126 | 0.126 | |
pen | −0.916 ** | −1.035 ** | −1.681 * | −2.859 *** | −0.625 * | −0.659 * |
0.401 | 0.407 | 0.993 | 0.998 | 0.353 | 0.358 | |
ene | 0.089 | 0.137 | −0.557 ** | −0.348 | 0.211 *** | 0.245 *** |
0.094 | 0.097 | 0.231 | 0.236 | 0.082 | 0.085 | |
IDI | 0.205 ** | 0.294 *** | 0.442 ** | 0.366 | 0.022 | 0.034 |
0.084 | 0.109 | 0.216 | 0.265 | 0.075 | 0.097 | |
IDI*EPC | −0.123 | −1.136 *** | −0.023 | |||
0.087 | 0.216 | 0.076 | ||||
Spatial | ||||||
rho | 0.563 *** | 0.549 *** | 0.513 *** | 0.440 *** | 0.791 *** | 0.792 *** |
0.048 | 0.049 | 0.050 | 0.053 | 0.034 | 0.034 | |
Variance | ||||||
sigma2_e | 0.247 *** | 0.246 *** | 0.608 *** | 0.595 *** | 0.217 *** | 0.216 *** |
0.008 | 0.008 | 0.019 | 0.019 | 0.007 | 0.007 | |
N | 530 | 530 | 530 | 530 | 530 | 530 |
With_R2 | 0.091 | 0.096 | 0.060 | 0.064 | 0.138 | 0.113 |
LR_Direct | SO2 | SO2 | Dust | Dust | PM2.5 | PM2.5 |
---|---|---|---|---|---|---|
GPI | −0.190 *** | −0.177 *** | 0.221 *** | 0.200 ** | −0.165 *** | −0.148 *** |
0.034 | 0.035 | 0.082 | 0.085 | 0.032 | 0.034 | |
ERI | 0.034 * | 0.031 * | 0.032 | 0.018 | 0.021 | 0.018 |
0.019 | 0.018 | 0.045 | 0.043 | 0.019 | 0.019 | |
EPC | 0.035 | 0.041 | −0.191 * | −0.188 * | −0.007 | 0.002 |
0.043 | 0.043 | 0.106 | 0.105 | 0.040 | 0.040 | |
ins | 0.055 * | 0.063 ** | −0.181 ** | −0.142 ** | 0.022 | 0.027 |
0.031 | 0.031 | 0.075 | 0.071 | 0.034 | 0.035 | |
pgdp | 0.224 *** | 0.246 *** | −0.062 | 0.050 | 0.252 *** | 0.269 *** |
0.065 | 0.065 | 0.156 | 0.151 | 0.073 | 0.075 | |
parc | 0.038 | 0.049 | −0.150 | −0.091 | 0.079 | 0.086 |
0.059 | 0.059 | 0.142 | 0.137 | 0.062 | 0.062 | |
pen | −0.438 *** | −0.456 *** | −0.018 | −0.124 | 0.075 | 0.051 |
0.129 | 0.128 | 0.299 | 0.281 | 0.153 | 0.154 | |
ene | 0.124 *** | 0.142 *** | 0.096 | 0.208 ** | 0.071 | 0.084 * |
0.044 | 0.045 | 0.106 | 0.103 | 0.048 | 0.049 | |
IDI | −0.086 ** | −0.064 | −0.260 *** | −0.369 *** | 0.207 *** | 0.246 *** |
0.038 | 0.048 | 0.094 | 0.115 | 0.037 | 0.045 | |
IDI*EPC | −0.039 | 0.154 | −0.062 | |||
0.045 | 0.109 | 0.041 | ||||
LR_Indiret | ||||||
GPI | −0.268 *** | −0.206 ** | 0.103 | 0.458 ** | −0.566 *** | −0.509 *** |
0.091 | 0.092 | 0.200 | 0.182 | 0.166 | 0.171 | |
ERI | 0.211 *** | 0.189 *** | −0.243 * | −0.317 *** | 0.258 ** | 0.233 ** |
0.065 | 0.063 | 0.143 | 0.124 | 0.118 | 0.119 | |
EPC | −0.139 | −0.071 | 0.138 | 0.457 * | −0.402 * | −0.330 |
0.125 | 0.125 | 0.281 | 0.254 | 0.218 | 0.224 | |
ins | 0.067 | 0.089 | −1.209 *** | −1.095 *** | −0.164 | −0.126 |
0.116 | 0.112 | 0.265 | 0.226 | 0.218 | 0.219 | |
pgdp | 1.112 *** | 1.197 *** | 1.983 *** | 2.253 *** | 1.301 ** | 1.435 ** |
0.317 | 0.311 | 0.699 | 0.608 | 0.595 | 0.610 | |
parc | 0.952 *** | 0.989 *** | 1.683 *** | 1.807 *** | 0.775 * | 0.819 * |
0.240 | 0.234 | 0.538 | 0.467 | 0.437 | 0.442 | |
pen | −1.837 ** | −1.978 *** | −2.445 | −3.764 *** | −1.622 | −1.778 |
0.734 | 0.721 | 1.533 | 1.338 | 1.312 | 1.341 | |
ene | 0.252 | 0.331 ** | −0.735 *** | −0.331 | 0.767 ** | 0.897 *** |
0.166 | 0.167 | 0.367 | 0.323 | 0.329 | 0.349 | |
IDI | 0.247 * | 0.399 ** | −0.833 *** | 0.263 | 0.534 ** | 0.657 ** |
0.134 | 0.163 | 0.291 | 0.322 | 0.236 | 0.296 | |
IDI*EPC | −0.222 * | −1.380 *** | −0.207 | |||
0.121 | 0.247 | 0.219 | ||||
LR_Total | ||||||
GPI | −0.458 *** | −0.384 | 0.324 | 0.658 *** | −0.732 *** | −0.657 *** |
0.098 | 0.099 | 0.213 | 0.191 | 0.179 | 0.185 | |
ERI | 0.245 *** | 0.220 | −0.212 | −0.299 * | 0.279 ** | 0.251 * |
0.074 | 0.072 | 0.163 | 0.141 | 0.131 | 0.133 | |
EPC | −0.104 | −0.030 | −0.053 | 0.269 | −0.409 * | −0.328 |
0.124 | 0.125 | 0.274 | 0.244 | 0.228 | 0.234 | |
ins | 0.122 | 0.152 | −1.390 *** | −1.237 *** | −0.142 | −0.099 |
0.137 | 0.133 | 0.311 | 0.268 | 0.246 | 0.247 | |
pgdp | 1.337*** | 1.443 | 1.921** | 2.303*** | 1.554 ** | 1.705 *** |
0.351 | 0.344 | 0.773 | 0.672 | 0.649 | 0.666 | |
parc | 0.990*** | 1.038 | 1.534*** | 1.716*** | 0.854 * | 0.905 * |
0.265 | 0.258 | 0.593 | 0.513 | 0.478 | 0.483 | |
pen | −2.275*** | −2.434 | −2.462 | −3.888*** | −1.547 | −1.726 |
0.819 | 0.805 | 1.712 | 1.490 | 1.439 | 1.470 | |
ene | 0.376** | 0.474 | −0.639 | −0.122 | 0.838 ** | 0.981 ** |
0.190 | 0.191 | 0.422 | 0.374 | 0.364 | 0.385 | |
IDI | 0.160 | 0.335 | −1.093*** | −0.106 | 0.741 *** | 0.903 *** |
0.142 | 0.166 | 0.307 | 0.318 | 0.253 | 0.312 | |
IDI*EPC | −0.260 | −1.226*** | −0.270 | |||
0.121 | 0.239 | 0.230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, Y.; Tian, J.; Ma, Z. Research on the Spatial Effects of Green Process Innovation, Environmental Regulation, and Precipitation on Environmental Air Pollution. Atmosphere 2023, 14, 211. https://doi.org/10.3390/atmos14020211
Zhou J, Li Y, Tian J, Ma Z. Research on the Spatial Effects of Green Process Innovation, Environmental Regulation, and Precipitation on Environmental Air Pollution. Atmosphere. 2023; 14(2):211. https://doi.org/10.3390/atmos14020211
Chicago/Turabian StyleZhou, Jingkun, Yating Li, Juan Tian, and Zhifei Ma. 2023. "Research on the Spatial Effects of Green Process Innovation, Environmental Regulation, and Precipitation on Environmental Air Pollution" Atmosphere 14, no. 2: 211. https://doi.org/10.3390/atmos14020211
APA StyleZhou, J., Li, Y., Tian, J., & Ma, Z. (2023). Research on the Spatial Effects of Green Process Innovation, Environmental Regulation, and Precipitation on Environmental Air Pollution. Atmosphere, 14(2), 211. https://doi.org/10.3390/atmos14020211