Vertical Profile of Meteoric and Surface-Water Isotopes in Nepal Himalayas to Everest’s Summit
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Precipitation Stable Isotopes
3.2. Surface Waters
4. Discussion
4.1. Possible Transition Suggested by Vertical Profile of Surface Snow and Ice Isotopes
4.2. Detection of the Transitional Altitudes and Attributions
4.3. Circulation Mechanisms Revealed by the Vertical Profile of Surface-Snow Isotopes
5. Conclusions
- (1)
- Daily precipitation stable isotopes during 2016–2018 at 5050 m asl confirm the dominance of Indian summer monsoon circulation, highlighting the significance of rainy-season (May–October) precipitation to surface-water composition given the poor precipitation amount during dry seasons (November–April).
- (2)
- The comparison of surface-snow isotopes with corresponding precipitation data prove the high correlation and high similarity between the two. It also underlines the slow rotation cycle of surface snow and implies the climatic, rather than synoptic, significance of high-elevation surface snow.
- (3)
- δ18O in both river and ground water sampled below 5500 m asl show a significant altitude effect in the Southern Himalaya, with the altitudinal lapse rate of ground water larger than that of river. This implies strong local impacts on the vertical profile of surface-water isotopes.
- (4)
- Snow and ice samples were all collected above 5500 m asl; hence, they provide a first glimpse of the altitudinal lapse rate of surface water in extremely high elevations. The vertical profiles of both water types suggest a transition in the altitudinal lapse rate of δ18O, with the transition in snow δ18O at a vertical zone between 6030 and 6280 m asl, while that in ice at 5775 m asl.
- (5)
- The vertical profile in surface-snow δ18O also suggests moisture sources and the interaction of large-scale circulation with local mountain valley circulation, katabatic wind, and sublimation in the extremely cold and dry environment on top. We, thus, reveal more complex circulation patterns overpassing the peak of the Himalaya than previously understood. Such a study is also conducive to understanding the deposition effect of a cold and dry environment on atmospheric pollutants, supplementing the current understanding on major wind circulation streams over extremely high elevations, and highlighting the effect of katabatic wind on South Asian transport.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.P.; Lang, T.J. Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001. Mon. Weather Rev. 2003, 131, 1408–1427. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Yang, K.; Liang, S.; Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang. 2009, 97, 321–327. [Google Scholar] [CrossRef]
- Zhang, H.; Immerzeel, W.W.; Zhang, F.; de Kok, R.J.; Chen, D.; Yan, W. Snow cover persistence reverses the altitudinal pat-terns of warming above and below 5000 m on the Tibetan Plateau. Sci. Total Environ. 2022, 803, 149889. [Google Scholar] [CrossRef] [PubMed]
- Ingraham, N.L. Chapter 3—Isotopic Variations in Precipitation. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 87–118. [Google Scholar]
- Ding, L.; Spicer, R.A.; Yang, J.; Xu, Q.; Cai, F.; Li, S.; Lai, Q.; Wang, H.; Spicer, T.E.V.; Yue, Y.; et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 2017, 45, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Rowley, D.B.; Garzione, C.N. Stable Isotope-Based Paleoaltimetry. Annu. Rev. Earth Planet. Sci. 2007, 35, 463–508. [Google Scholar] [CrossRef]
- Xiong, Z.; Liu, X.; Ding, L.; Farnsworth, A.; Spicer, R.A.; Xu, Q.; Valdes, P.; He, S.; Zeng, D.; Wang, C.; et al. The rise and demise of the Paleogene Central Tibetan Valley. Sci. Adv. 2022, 8, eabj0944. [Google Scholar] [CrossRef]
- Feng, R.; Poulsen, C.J.; Werner, M.; Chamberlain, C.P.; Mix, H.; Mulch, A. Early Cenozoic Evolution of topography, climate and stable isotopes in precipitation in the North American Cordillera. Am. J. Sci. 2013, 313, 613–648. [Google Scholar] [CrossRef]
- Botsyun, S.; Sepulchre, P.; Donnadieu, Y.; Risi, C.; Licht, A.; Rugenstein, J.K.C. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science 2019, 363, eaaq1436. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Qin, D.; Yao, T.; Duan, K. High-elevation Meteoric precipitation δ~(18)O features in Xixabangma during summer monsoon (in Chinese with English abstract). J. Mt. Sci. 2000, 1, 1–6. [Google Scholar]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Norris, J.; Carvalho, L.M.V.; Jones, C.; Cannon, F. Warming and drying over the central Himalaya caused by an amplification of local mountain circulation. Npj Clim. Atmos. Sci. 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Guyennon, N.; Ouyang, L.; Tian, L.; Tartari, G.; Salerno, F. Impact of summer monsoon on the elevation-dependence of meteorological variables in the south of central Himalaya. Int. J. Climatol. 2018, 38, 1748–1759. [Google Scholar] [CrossRef]
- Ueno, K.; Toyotsu, K.; Bertolani, L.; Tartari, G. Stepwise Onset of Monsoon Weather Observed in the Nepal Himalaya. Mon. Weather. Rev. 2008, 136, 2507–2522. [Google Scholar] [CrossRef]
- de Kok, R.J.; Tuinenburg, O.A.; Bonekamp, P.N.J.; Immerzeel, W.W. Irrigation as a Potential Driver for Anomalous Glacier Behavior in High Mountain Asia. Geophys. Res. Lett. 2018, 45, 2047–2054. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R. Some classical concepts of isotope hydrology: ”Rayleigh fractionation, Meteoric Water Lines, the Dansgaard effects (altitude, latitude, distance from coast and amount effects) and the dexcess parameter”. In Isotopes in the Water Cycle: Present and Future of a Developing Science; Aggarwal, P.K., Gat, J.R., Froehlich, K.F.O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 127–137. [Google Scholar]
- Jouzel, J.; Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. Atmos. 1984, 89, 1749–1757. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguasaraguas, L.; Gonfiantini, R. Relation between Long-Term Trends of Oxygen-18 Isotope Composition of Precipitation and Climate. Science 1992, 258, 981–985. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; Numaguti, A.; Sun, W. Stable Isotope Variations in Monsoon Precipitation on the Tibetan Plateau. J. Meteorol. Soc. Jpn. 2001, 79, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, P.K.; Romatschke, U.; Araguas-Araguas, L.; Belachew, D.; Longstaffe, F.J.; Berg, P.; Schumacher, C.; Funk, A. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 2016, 9, 624–629. [Google Scholar] [CrossRef]
- Yang, X.; Yao, T.; Yang, W.; Yu, W.; Qu, D. Co-existence of temperature and amount effects on precipitation δ18O in the Asian monsoon region. Geophys. Res. Lett. 2011, 38, 6. [Google Scholar] [CrossRef]
- Yang, X.; Xu, B.; Yang, W.; Qu, D. The Indian monsoonal influence on altitude effect of δ 18O in surface water on southeast Tibetan Plateau. Sci. China Earth Sci. 2012, 55, 438–445. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Elservier: Oxford, UK, 2010. [Google Scholar]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Aravena, R.; Suzuki, O.; Peña, H.; Pollastri, A.; Fuenzalida, H.; Grilli, A. Isotopic composition and origin of the precipitation in Northern Chile. Appl. Geochem. 1999, 14, 411–422. [Google Scholar] [CrossRef]
- Fritz, P.; Suzuki, O.; Silva, C.; Salati, E. Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile. J. Hydrol. 1981, 53, 161–184. [Google Scholar] [CrossRef]
- Gonfiantini, R. On the isotopic composition of precipitation. In Proceedings, International Symposium on Isotope Hydrology, In memory of J.-Ch. Fontes; BRGM-Orstom: Paris, France, 1996. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Roch, A. The Glaciers, Snow and Avalanches of Mount Everest. J. Glaciol. 1954, 2, 428–430. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Hou, S.; Kaspari, S.; Mayewski, P.A. Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere 2014, 8, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Kendall, C.; Caldwell, E.A. Fundamentals of Isotope Geochemistry. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 51–86. [Google Scholar]
- Matthews, T.; Perry, L.B.; Koch, I.; Aryal, D.; Khadka, A.; Shrestha, D.; Abernathy, K.; Elmore, A.C.; Seimon, A.; Tait, A.; et al. Going to Extremes: Installing the World’s Highest Weather Stations on Mount Everest. Bull. Am. Meteorol. Soc. 2020, 101, E1870–E1890. [Google Scholar] [CrossRef]
- Majoube, M. Fractionnement en 180 entre la glace et la vapeur d’eau. J. Chim. Phys. 1971, 68, 625–636. [Google Scholar] [CrossRef]
- Vuille, M.; Werner, M. Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results. Clim. Dyn. 2005, 25, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Tian, L.; Cai, Z.; Shao, L.; Guo, X.; Tian, R.; Li, Y.; Chen, Y.; Yuan, C. Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales. Earth Planet. Sci. Lett. 2020, 529, 115837. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
Water Type | Altitude–δ18O Covariant (‰/100 m) | Altitude–Deuterium Excess Covariant (‰/100 m) | ||||||
---|---|---|---|---|---|---|---|---|
Jan | May | Jul | Oct | Nov | Dec | All | All | |
Ground Water | −0.37 | −0.25 | −0.24 | |||||
River | −0.14 | -- | −0.16 | -- | ||||
Snow | -- | −0.27 | -- | −0.33 | −0.19 | |||
Ice | 0.34 | -- | -- | -- | 0.34 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Acharya, S.; Yao, T. Vertical Profile of Meteoric and Surface-Water Isotopes in Nepal Himalayas to Everest’s Summit. Atmosphere 2023, 14, 202. https://doi.org/10.3390/atmos14020202
Yang X, Acharya S, Yao T. Vertical Profile of Meteoric and Surface-Water Isotopes in Nepal Himalayas to Everest’s Summit. Atmosphere. 2023; 14(2):202. https://doi.org/10.3390/atmos14020202
Chicago/Turabian StyleYang, Xiaoxin, Sunil Acharya, and Tandong Yao. 2023. "Vertical Profile of Meteoric and Surface-Water Isotopes in Nepal Himalayas to Everest’s Summit" Atmosphere 14, no. 2: 202. https://doi.org/10.3390/atmos14020202
APA StyleYang, X., Acharya, S., & Yao, T. (2023). Vertical Profile of Meteoric and Surface-Water Isotopes in Nepal Himalayas to Everest’s Summit. Atmosphere, 14(2), 202. https://doi.org/10.3390/atmos14020202