Research on Typhoon Multi-Stage Cloud Characteristics Based on Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Introduction
- (1)
- Himawari-8 satellite products
- (2)
- CMA Best-Path Dataset
2.2. Methods
2.2.1. YOLOv5 Model
- (1)
- BackBone
- (2)
- Neck
- (3)
- Head
2.2.2. Brightness Temperature Perturbation Algorithm
3. Results
3.1. Typhoon Positioning Results Analysis
3.2. Analysis of Cloud Characteristics Evolution in Different Stages of Typhoons
3.3. Analysis of the Reasons for the Evolution of Typhoon Cloud Characteristics
4. Discussion
4.1. The Relationship between the Variation of Typhoon Cloud Characteristics and Precipitation
4.2. Influence and Limitations
4.3. Prospect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Zhang, W.; Wang, X. Machine learning in tropical cyclone forecast modeling: A review. Atmosphere 2020, 11, 676. [Google Scholar] [CrossRef]
- Nakamura, J.; Camargo, S.J.; Sobel, A.H.; Henderson, N.; Emanuel, K.A.; Kumar, A.; LaRow, T.E.; Murakami, H.; Roberts, M.J.; Scoccimarro, E. Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos. 2017, 122, 9721–9744. [Google Scholar] [CrossRef]
- Rüttgers, M.; Lee, S.; Jeon, S.; You, D. Prediction of a typhoon track using a generative adversarial network and satellite images. Sci. Rep. 2019, 9, 6057. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhan, Z.; Shen, J. A deep learning based method for typhoon recognition and typhoon center location. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9871–9874. [Google Scholar]
- Intajag, S.; Paithoonwatanakij, K.; Cracknell, A.P. Iterative satellite image segmentation by fuzzy hit-or-miss and homogeneity index. IEE Proc. Vis. Image Signal Process. 2006, 153, 206–214. [Google Scholar] [CrossRef]
- Ooi, W.S.; Lim, C.P. Fuzzy clustering of color and texture features for image segmentation: A study on satellite image retrieval. J. Intell. Fuzzy Syst. 2006, 17, 297–311. [Google Scholar]
- Zhou, J.; Xiang, J.; Huang, S. Classification and prediction of typhoon levels by satellite cloud pictures through GC–LSTM deep learning model. Sensors 2020, 20, 5132. [Google Scholar] [CrossRef] [PubMed]
- Jiaqi, Y.; Jiyi, C.; Yun, C.; Chaozhen, L.; Guoyuan, L. Cloud detection of remote sensing images based on deep learning and condition random field. Sci. Surv. Mapp. 2019, 258, 121–127. [Google Scholar]
- Bai, L.; Tang, J.; Guo, R.; Zhang, S.; Liu, K. Quantifying interagency differences in intensity estimations of Super Typhoon Lekima (2019). Front. Earth Sci. 2022, 16, 5–16. [Google Scholar] [CrossRef]
- Shi, C.; Wang, C.; Wang, Y.; Xiao, B. Deep convolutional activations-based features for ground-based cloud classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 816–820. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Sheng, V.S. A real-time typhoon eye detection method based on deep learning for meteorological information forensics. J. Real-Time Image Process. 2020, 17, 95–102. [Google Scholar] [CrossRef]
- Tan, C. Tclnet: Learning to locate typhoon center using deep neural network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4600–4603. [Google Scholar]
- Li, L.; Shuai, Z.; Hu, J.; Zhang, Y. Classification of Tropical Cyclone Intensity Based on Deep Learning and YOLO V5. In Proceedings of the International Conference on Artificial Intelligence and Security, Qinghai, China, 22–26 July 2022; pp. 280–291. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Fang, J.; Michael, K.; Montes, D.; Nadar, J.; Skalski, P. Ultralytics/Yolov5: V6. 1-Tensorrt, Tensorflow Edge Tpu and Openvino Export and Inference; Version 6.1; Zenodo: Meyrin, Switzerland, 2022. [Google Scholar] [CrossRef]
- Takemi, T.; Unuma, T. Environmental factors for the development of heavy rainfall in the eastern part of Japan during Typhoon Hagibis (2019). Sola 2020, 16, 30–36. [Google Scholar] [CrossRef]
- Choi, J.; Lee, J.; Kim, S. Impact of sea surface temperature and surface air temperature on maximizing typhoon rainfall: Focusing on typhoon maemi in Korea. Adv. Meteorol. 2019, 2019, 1930453. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Statistical analysis of the characteristics of typhoons approaching Japan from 2006 to 2019. Geomat. Nat. Hazards Risk 2023, 14, 2208722. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Zhang, Y.; Zhang, L.; Lei, H.; Zheng, H. Precipitation characteristics of typhoon Lekima (2019) at landfall revealed by joint observations from GPM satellite and S-band radar. Atmos. Res. 2021, 260, 105714. [Google Scholar] [CrossRef]
- Wanting, C.; Wenhua, G.; Yihong, D.; Lin, D. The impact of cloud microphysical processes on typhoon numerical simulation. J. Appl. Meteorol. Sci. 2019, 30, 443–455. [Google Scholar]
- Tsuboki, K.; Luo, Y. High-resolution simulations of heavy rainfalls in association with monsoon systems and typhoons using cloud-resolving models. Multiscale Glob. Monsoon Syst. 2020, 10, 113–131. [Google Scholar]
- Zhao, Y.; Zhao, C.; Sun, R.; Wang, Z. A multiple linear regression model for tropical cyclone intensity estimation from satellite infrared images. Atmosphere 2016, 7, 40. [Google Scholar] [CrossRef]
- Judt, F.; Chen, S.S. Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles. Mon. Weather Rev. 2016, 144, 4395–4420. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.T.; Manton, M.J.; Rosenfeld, D.; Marchand, R.; McFarquhar, G.M.; Protat, A. What is the role of sea surface temperature in modulating cloud and precipitation properties over the Southern Ocean? J. Clim. 2016, 29, 7453–7476. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.; Manton, M.; Protat, A.; Majewski, L.; Nguyen, H. Evaluating Himawari-8 cloud products using shipborne and CALIPSO observations: Cloud-top height and cloud-top temperature. J. Atmos. Ocean. Technol. 2019, 36, 2327–2347. [Google Scholar] [CrossRef]
- Tan, J.; Yang, Q.; Hu, J.; Huang, Q.; Chen, S. Tropical cyclone intensity estimation using Himawari-8 satellite cloud products and deep learning. Remote Sens. 2022, 14, 812. [Google Scholar] [CrossRef]
- Lu, J.; Feng, T.; Li, J.; Cai, Z.; Xu, X.; Li, L.; Li, J. Impact of assimilating Himawari-8-derived layered precipitable water with varying cumulus and microphysics parameterization schemes on the simulation of Typhoon Hato. J. Geophys. Res. Atmos. 2019, 124, 3050–3071. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Japan. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M. Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to monitor the DC cloud generation process. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3229–3239. [Google Scholar] [CrossRef]
- Heidinger, A. Algorithm Theoretical Basis Document: ABI Cloud Mask; University of Wisconsin: Madison, WI, USA, 2011. [Google Scholar]
- Nakajima, T.Y.; Nakajma, T. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci. 1995, 52, 4043–4059. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Fan, H. Spatiotemporal distributions of cloud properties over China based on Himawari-8 advanced Himawari imager data. Atmos. Res. 2020, 240, 104927. [Google Scholar] [CrossRef]
- Purbantoro, B.; Aminuddin, J.; Manago, N.; Toyoshima, K.; Lagrosas, N.; Sumantyo, J.T.S.; Kuze, H. Comparison of Aqua/Terra MODIS and Himawari-8 satellite data on cloud mask and cloud type classification using split window algorithm. Remote Sens. 2019, 11, 2944. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.; Wan, R. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, X.; Wan, Y.; Wang, J.; Lyu, H. An Improved YOLOv5 Method for Small Object Detection in UAV Capture Scenes. IEEE Access 2023, 11, 14365–14374. [Google Scholar] [CrossRef]
- Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z.; Li, J.; Chang, Y. Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PLoS ONE 2021, 16, e0259283. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Huang, L.; Tang, B.-H. Bridge detection method for HSRRSIs based on YOLOv5 with a decoupled head. Int. J. Digit. Earth 2023, 16, 113–129. [Google Scholar] [CrossRef]
- Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Xie, T.; Chen, J.; Yan, J. A New Objective Typhoon Location Algorithm Considering a Perturbation Factor Based on FY-4A Brightness Temperature Data. J. Atmos. Ocean. Technol. 2022, 39, 2023–2038. [Google Scholar] [CrossRef]
- Tao, X.; Jiajun, C.; Junjie, Y. Research on the spatial disturbance characteristic of brightness temperature in typhoon center region and the application of typhoon positioning. J. Nat. Disasters 2023, 32, 161–177. [Google Scholar]
- Xie, T.; Perrie, W.; Chen, W. Gulf Stream thermal fronts detected by synthetic aperture radar. Geophys. Res. Lett. 2010, 37, L06601. [Google Scholar] [CrossRef]
- Jian, Y.; Lin, D.; Jing, C.; Jingzhuo, W.; Hongqi, L. Effect of Ensemble Initial Perturbations with Rescaling on the Forecast of Typhoon In-Fa (2106). Meteorol. Mon. 2023, 49, 773–789. [Google Scholar]
- Nie, Y.; Sun, J. Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophys. Res. Lett. 2022, 49, e2021GL097446. [Google Scholar] [CrossRef]
- Min, Z.; Zhang, H.; Hai-Bo, W.; Xi-Xun, Z.; Li, Z.; Qi, A.; Qi, C. The change of cloud top height over East Asia during 2000–2018. Adv. Clim. Change Res. 2020, 11, 110–117. [Google Scholar]
- Rezaei, M.; Farajzadeh, M.; Kant, S. The observational evidence of association between types of aerosol mode-cloud-precipitation interaction over Iran. Atmos. Pollut. Res. 2023, 14, 101760. [Google Scholar] [CrossRef]
- Qian, Z.; Chengyan, M.; Lihua, D.; Junyu, L.; Xin, P.; Pei, L.; Yiwen, L.; Yi, H. Comparison of cloud characteristics between Typhoon Lekima (1909) and Typhoon Yagi (1814). J. Appl. Meteorol. Sci. 2022, 33, 43–55. [Google Scholar]
- Chen, W.; Yang, S.; Wu, Z.; Cai, F. Large-scale atmospheric features favoring the tropical cyclone activity affecting the Guangdong–Hong Kong–Macao Greater Bay Area of China. Environ. Res. Lett. 2022, 17, 104057. [Google Scholar] [CrossRef]
- Chen, A.; Huang, H.; Wang, J.; Li, Y.; Chen, D.; Liu, J. An analysis of the spatial variation of tropical cyclone rainfall trends in Mainland Southeast Asia. Int. J. Climatol. 2023, 43, 5912–5926. [Google Scholar] [CrossRef]
- Sun, J.-P.; Lv, G.-J.; Ma, X.-G. An improved typhoon simulation method based on Latin hypercube sampling method. Sci. Rep. 2022, 12, 9313. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, S.; Zhao, L.; Cao, J. A case application of WRF-UCM models to the simulation of urban wind speed profiles in a typhoon. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104874. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Lei, L.; Tang, J. Multi-scale characteristics of an extreme rain event in Shandong Province, produced by Typhoon Lekima (2019). Front. Earth Sci. 2023, 10, 1093545. [Google Scholar] [CrossRef]
- Rüttgers, M.; Jeon, S.; Lee, S.; You, D. Prediction of typhoon track and intensity using a generative adversarial network with observational and meteorological data. IEEE Access 2022, 10, 48434–48446. [Google Scholar] [CrossRef]
- Tsujino, S.; Tsuboki, K. Intensity change of Typhoon Nancy (1961) during landfall in a moist environment over Japan: A numerical simulation with spectral nudging. J. Atmos. Sci. 2020, 77, 1429–1454. [Google Scholar] [CrossRef]
- Miao, H.; Wang, X.; Liu, Y.; Wu, G. An evaluation of cloud vertical structure in three reanalyses against CloudSat/cloud-aerosol lidar and infrared pathfinder satellite observations. Atmos. Sci. Lett. 2019, 20, e906. [Google Scholar] [CrossRef]
- Yamada, H.; Ito, K.; Tsuboki, K.; Shinoda, T.; Ohigashi, T.; Yamaguchi, M.; Nakazawa, T.; Nagahama, N.; Shimizu, K. The double warm-core structure of Typhoon Lan (2017) as observed through the first Japanese eyewall-penetrating aircraft reconnaissance. J. Meteorol. Soc. Japan. Ser. II 2021, 99, 1297–1327. [Google Scholar] [CrossRef]
- Li, S.; Otto, F.E. The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis. Clim. Change 2022, 172, 7. [Google Scholar] [CrossRef]
- Lee, T.-C.; Knutson, T.R.; Nakaegawa, T.; Ying, M.; Cha, E.J. Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region—Part I: Observed changes, detection and attribution. Trop. Cyclone Res. Rev. 2020, 9, 1–22. [Google Scholar] [CrossRef]
Dataset | Product | Data Type |
---|---|---|
Himawari-8 L1 data | #13 | Brightness temperature |
Himawari-8 L2 Cloud Products | COT | Cloud optical thickness |
CTH | Cloud-top height | |
CTT | Cloud-top temperature | |
CTYPE | Cloud type (ISCCP definition) |
Variable Name | Description |
---|---|
YYYYMMDDHH | Record the time of typhoon |
I | The intensity of typhoon is marked by the average wind speed of 2 min before the positive point. 0—weaker than the tropical depression (TD), or the level is unknown. 1—tropical low (TD, 10.8—17.1 m/s). 2—Tropical storm (TS, 17.2—24.4 m/s). 3—Severe Tropical Storm (STS, 24.5—32.6 m/s). 4—Typhoon (TY, 32.7—41.4 m/s). 5—Strong Typhoon (STY, 41.5—50.9 m/s). 6—Super Typhoon (SuperTY, ≥51.0 m/s). 9—degeneration |
LAT | The current latitude of typhoon is (0.1° N). |
LONG | The current longitude of the typhoon (0.1° N) |
PRES | The lowest pressure in typhoon center (hPa) |
WND | Typhoon 2-min average near-center maximum wind speed (m/s) |
OWD | Typhoon 2 min average wind speed (m/s) |
Date | The Distance from the CMA Typhoon Center of the Location Result | Date | The Distance from the CMA Typhoon Center of the Location Result |
---|---|---|---|
19 July 0:00 | 3.5 | 23 July 12:00 | 29.6 |
19 July 20:00 | 11.2 | 23 July 18:00 | 3.8 |
20 July 0:00 | 7.9 | 24 July 0:00 | 22.3 |
20 July 12:00 | 8.3 | 24 July 12:00 | 48.8 |
20 July 18:00 | 11.1 | 24 July 21:00 | 11.3 |
21 July 6:00 | 4 | 25 July 0:00 | 20.6 |
21 July 12:00 | 16.1 | 25 July 3:00 | 17.4 |
21 July 18:00 | 16 | 25 July 6:00 | 47.5 |
22 July 0:00 | 11.4 | 25 July 15:00 | 47 |
22 July 6:00 | 3.7 | 25 July 18:00 | 33 |
22 July 12:00 | 35.9 | 26 July 6:00 | 43.3 |
22 July 18:00 | 8.3 | 26 July 9:00 | 31.6 |
COT | CTH | CTT | |
---|---|---|---|
Standard deviation | 0.97 | 1.01 | 29.04 |
Variance | 0.94 | 1.01 | 843.55 |
Maximum | 6.59 | 4.16 | 106.68 |
Minimum | 3.82 | 1.16 | 34.19 |
Max-Min | 2.78 | 3.00 | 72.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Cao, Y.; Yao, J.; Zhu, H.; Zhang, N.; Ji, X.; Li, J.; Guo, Z. Research on Typhoon Multi-Stage Cloud Characteristics Based on Deep Learning. Atmosphere 2023, 14, 1820. https://doi.org/10.3390/atmos14121820
Wang M, Cao Y, Yao J, Zhu H, Zhang N, Ji X, Li J, Guo Z. Research on Typhoon Multi-Stage Cloud Characteristics Based on Deep Learning. Atmosphere. 2023; 14(12):1820. https://doi.org/10.3390/atmos14121820
Chicago/Turabian StyleWang, Mengran, Yongqiang Cao, Jiaqi Yao, Hong Zhu, Ningyue Zhang, Xinhui Ji, Jing Li, and Zichun Guo. 2023. "Research on Typhoon Multi-Stage Cloud Characteristics Based on Deep Learning" Atmosphere 14, no. 12: 1820. https://doi.org/10.3390/atmos14121820
APA StyleWang, M., Cao, Y., Yao, J., Zhu, H., Zhang, N., Ji, X., Li, J., & Guo, Z. (2023). Research on Typhoon Multi-Stage Cloud Characteristics Based on Deep Learning. Atmosphere, 14(12), 1820. https://doi.org/10.3390/atmos14121820