Assessment of Changes in Heatwave Aspects over Saudi Arabia during the Last Four Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Meteorological Data
2.2. Methods and Heatwave Characteristics
3. Results and Discussion
3.1. Decadal Analysis of HWN
3.2. Decadal Analysis of HWF
3.3. Decadal Analysis of HWD
3.4. Decadal Analysis of HWM
3.5. Decadal Analysis of HWA
3.6. Limitations of this Study
4. Conclusions
- -
- There is a remarkable congruence in the behaviors and patterns of the five HW aspects, whether they were derived from the TX90, TN90, or EHF index, although they produced relatively different estimates for these aspects.
- -
- The decadal sum and anomaly of the five HW aspects over the entire KSA territory increase gradually from the first decade (1982–1991) to the highest values in the last decade (2012–2021), based on the three indices.
- -
- The highest values of these HW aspects are found mostly in the northern and western parts of KSA, particularly along the Red Sea coast, while the lowest values are found in the southern part of KSA.
- -
- The maximum decadal sum with mostly positive anomaly of HWN (42 events), HWF (255 days), and HWD (145 days) occurred in the last decade, as derived from the three indices.
- -
- The maximum decadal sum of HWM (HWA) ranges from 175 to 463 (from 189 to 471) °C based on TX90 and TN90, while it ranges from 7 to 58 (from 15 to 185) °C2 based on EHF.
- -
- The time-latitudinal cross-section analysis revealed that the maximum values of the five HW aspects are found in 1983, 1987, and 1991 (first decade), 1998 (second decade), and 2003, 2006, 2007, and 2010 (third decade), as well as 2012 and 2015–2021 (last decade). Also, the influence of HW aspects from all indices is most pronounced in the northern part of the KSA in most decades, especially in the last decade.
- -
- The highest maximum values of all HW aspects are found during the period 2015–2021, while the lowest values are detected in the period 1984–1986, followed by 1992 and 1993.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. Available online: www.ipcc.ch/assessment-report/ar6 (accessed on 22 November 2022).
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, 29. [Google Scholar] [CrossRef]
- Coumou, D.; Robinson, A.; Rahmstorf, S. Global increase in record-breaking monthly-mean temperatures. Clim. Change 2013, 118, 771–782. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., et al., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Feng, S.; Hu, Q.; Huang, W.; Ho, C.H.; Li, R.; Tang, Z. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Glob. Planet. Change 2014, 112, 41–52. [Google Scholar] [CrossRef]
- Raftery, A.E.; Zimmer, A.; Frierson, D.M.; Startz, R.; Liu, P. Less than 2 C warming by 2100 unlikely. Nat. Clim. Change 2017, 7, 637. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.; Sánchez, E.; Gutiérrez, C. Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. JGR Atmos. 2014, 119, 12–500. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Morsy, M.; El Afandi, G. Decadal changes of heatwave aspects and heat index over Egypt. Theor. Appl. Climatol. 2021, 146, 71–90. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. Chapter 11: Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Ramis, C.; Amengual, A. Climate Change Effects on European Heat Waves and Human Health. In Encyclopedia of the Anthropocene; Dellasala, D.A., Goldstein, M.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 209–216. ISBN 9780128135761. [Google Scholar]
- World Meteorological Organization; Original Mountain Marathon. International Meteorological Vocabulary; WMO-No 1182; WMO: Geneva, Switzerland, 1966; p. 276. [Google Scholar]
- Frich, P.A.L.V.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef]
- Unkašević, M.; Tošić, I. An analysis of heat waves in Serbia. Glob. Planet. Change 2009, 65, 17–26. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Y.; Tao, H.; Shalamzari, M.J. Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote Sens. 2021, 13, 3824. [Google Scholar] [CrossRef]
- Robinson, P.J. On the Definition of a Heat Wave. J. Appl. Meteorol. Climatol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Schoetter, R.; Cattiaux, J.; Douville, H. Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim. Dyn. 2015, 45, 1601–1616. [Google Scholar] [CrossRef]
- Nissan, H.; Burkart, K.; Coughlan de Perez, E.; Van Aalst, M.; Mason, S. Defining and Predicting Heat Waves in Bangladesh. J. Appl. Meteorol. Climatol. 2017, 56, 2653–2670. [Google Scholar] [CrossRef]
- Becker, F.N.; Fink, A.H.; Bissolli, P.; Pinto, J.G. Towards a more comprehensive assessment of the intensity of historical European heat waves (1979–2019). Atmos. Sci. Lett. 2022, 23, e1120. [Google Scholar] [CrossRef]
- Basara, J.; Basara, H.; Illston, B.; Crawford, K. The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteorol. 2010, 2010, 230365. [Google Scholar] [CrossRef]
- Cristo, R.D.; Mazzarella, A.; Viola, R. An analysis of heat index over Naples (Southern Italy) in the context of European heat wave of 2003. Nat. Hazards 2007, 40, 373–379. [Google Scholar] [CrossRef]
- Gaffen, D.J.; Ross, R.J. Climatology and trends of U. S. Surface humidity and temperature. J. Clim. 1999, 12, 811–828. [Google Scholar]
- Morjani, Z.E.A.E.; Ebener, S.; Boos, J.; Ghaffar, E.A.; Musani, A. Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int. J. Health Geogr. 2007, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Patricola, C.M.; Cook, K.H. Northern African climate at the end of the twenty-first century: An integrated application of regional and global climate models. Clim. Dyn. 2010, 35, 193–212. [Google Scholar] [CrossRef]
- Schoen, C. A new empirical model of the temperature-humidity index. J. Appl. Meteorol. 2005, 44, 1413–1420. [Google Scholar] [CrossRef]
- McCarthy, M.; Armstrong, L.; Armstrong, N. A new heatwave definition for the UK. Weather 2019, 74, 382–387. [Google Scholar] [CrossRef]
- Barriopedro, D.; García-Herrera, R.; Ordóñez, C.; Miralles, D.G.; Salcedo-Sanz, S. Heat waves: Physical understanding and scientificchallenges. Rev. Geophys. 2023, 61, e2022RG000780. [Google Scholar] [CrossRef]
- Casati, B.; Yagouti, A.; Chaumont, D. Regional Climate Projections of Extreme Heat Events in Nine Pilot Canadian Communities for Public Health Planning. J. Appl. Meteor. Climatol. 2013, 52, 2669–2698. [Google Scholar] [CrossRef]
- Stephenson, D.B. Definition, diagnosis, and origin of extreme weather and climate events. In Climate Extremes and Society; Diaz, H.F., Murnane, R.J., Eds.; Cambridge University Press: New York, NY, USA, 2008; pp. 11–23. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 1–594. [Google Scholar]
- Sulikowska, A.; Wypych, A. Summer temperature extremes in Europe: How does the definition affect the results? Theor. Appl. Climatol. 2020, 141, 19–30. [Google Scholar] [CrossRef]
- WMO. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; Tank, A.K., Zwiers, F.W., Zhang, X., Eds.; WMO: Geneva, Switzerland, 2009. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, 1–22. [Google Scholar] [CrossRef]
- Della-Marta, P.M.; Luterbacher, J.; von Weissenfluh, H.; Xoplaki, E.; Brunet, M.; Wanner, H. Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim. Dyn. 2007, 29, 251–275. [Google Scholar] [CrossRef]
- Carril, A.F.; Gualdi, S.; Cherchi, A.; Navarra, A. Heatwaves in Europe: Areas of homogeneous variability and links with the regional to large-scale atmospheric and SSTs anomalies. Clim. Dyn. 2008, 30, 77–98. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J. Hot Central-European summer of 2013 in a long-term context. Int. J. Climatol. 2015, 35, 4399–4407. [Google Scholar] [CrossRef]
- Hoy, A.; Hänsel, S.; Skalak, P.; Ustrnul, Z.; Bochníček, O. The extreme European summer of 2015 in a long-term perspective. Int. J. Climatol. 2017, 37, 943–962. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Klein Tank, A.; Peterson, T.C.; Trewin, P.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V. On the measurement of heat waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Guo, Y.; Gasparrini, A.; Armstrong, B.G.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; de Sousa Zanotti Stagliorio Coelho, M.; Pan, X.; Kim, H.; Hashizume, M.; et al. Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect. 2017, 125, 087006. [Google Scholar] [CrossRef]
- Anderson, G.B.; Oleson, K.W.; Jones, B.; Peng, R.D. Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities. Clim. Change 2018, 146, 455–470. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- Miller, S.; Chua, K.; Coggins, J.; Mohtadi, H. Heat waves, climate change, and economic output. J. Eur. Econ. Assoc. 2021, 19, 2658–2694. [Google Scholar] [CrossRef]
- Ozturk, T.; Ceber, Z.P.; Türkeş, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Waha, K.; Krummenauer, L.; Adams, S.; Aich, V.; Baarsch, F.; Coumou, D.; Fader, M.; Hoff, H.; Jobbins, G.; Mengel, M.; et al. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Change 2017, 17, 1623–1638. [Google Scholar] [CrossRef]
- Tanarhte, M.; Hadjinicolaou, P.; Lelieveld, J. Heat wave characteristics in the Eastern Mediterranean and Middle East using extreme value theory. Clim. Res. 2015, 63, 99–113. [Google Scholar] [CrossRef]
- Varela, R.; Rodríguez-Díaz, L.; DeCastro, M. Persistent heat waves projected for Middle East and North Africa by the end of the 21st century. PLoS ONE 2020, 15, e0242477. [Google Scholar] [CrossRef] [PubMed]
- Almazroui, M.; Islam, M.N.; Saeed, S.; Alkhalaf, A.K.; Dambul, R. Assessment of uncertainties in projected temperature and precipitation over the Arabian Peninsula using three categories of CMIP5 multimodel ensembles. Earth Syst. Environ. 2017, 1, 23. [Google Scholar] [CrossRef]
- Driouech, F.; ElRhaz, K.; Moufouma-Okia, W.; Arjdal, K.; Balhane, S. Assessing future changes of climate extreme events in the CORDEX-MENA region using regional climate model ALADIN-Climate. Earth Syst. Environ. 2020, 4, 477–492. [Google Scholar] [CrossRef]
- Odnoletkova, N.; Patzek, T.W. Data-driven analysis of climate change in Saudi Arabia: Trends in temperature extremes and human comfort indicators. J. Appl. Meteorol. Climatol. 2021, 60, 1055–1070. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Harrington, J., Jr. Time-sensitive analysis of a warming climate on heat waves in Saudi Arabia: Temporal patterns and trends. Int. J. Climatol. 2018, 38, 3123–3139.–3139. [Google Scholar] [CrossRef]
- Dasari, H.P.; Desamsetti, S.; Langodan, S.; Viswanadhapalli, Y.; Hoteit, I. Analysis of outdoor thermal discomfort over the Kingdom of Saudi Arabia. GeoHealth 2021, 5, e2020GH000370. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Jones, P.D.; Athar, H.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- Hasanean, H.; Almazroui, M. Rainfall: Features and variations over Saudi Arabia, a review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef]
- Tarawneh, Q.Y.; Chowdhury, S. Trends of climate change in Saudi Arabia: Implications on water resources. Climate 2018, 6, 8. [Google Scholar] [CrossRef]
- Wilby, R.L.; Yu, D. Rainfall and temperature estimation for a data sparse region. Hydrol. Earth Syst. Sci. 2013, 17, 3937–3955. [Google Scholar] [CrossRef]
- Kheimi, M.M.; Gutub, S. Assessment of remotely sensed precipitation products across the Saudi Arabia region. In Proceedings of the 6th International Conference on Water Resources and Arid Environments, Riyadh, Saudi Arabia, 16–18 December 2014; Volume 1617. [Google Scholar]
- Al-Mutairi, M.; Labban, A.; Abdeldym, A.; Abdel Basset, H. Trend Analysis and Fluctuations of Winter Temperature over Saudi Arabia. Climate 2023, 11, 67. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Mcgree, S.; Herold, N.; Alexander, L.; Schreider, S.; Kuleshov, Y.; Ene, E.; Finaulahi, S.; Inape, K.; Mackenzie, B.; Malala, H.; et al. Recent changes in mean and extreme temperature and precipitation in the Western Pacific Islands. J. Clim. 2019, 32, 4919–4941. [Google Scholar] [CrossRef]
- Alexander, L.V.; Herold, N.; ClimPACTv2 Indices and Software. WMO Commission for Climatology Expert Team on Sector-Specific Climate Indices. Available online: https://github.com/ARCCSS-extremes/climpact2 (accessed on 19 February 2016).
- Nairn, J.; Fawcett, R.; Ray, D. Defining and predicting excessive heat events, a national system. In Proceedings of the Modelling and Understanding High Impact Weather: Extended Abstracts of the Third CAWCR Modelling Workshop, Melbourne, Australia, 30 November–2 December 2009; Volume 30, pp. 83–86. [Google Scholar]
- Nairn, J.R.; Fawcett, R.J. The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health 2014, 12, 227–253. [Google Scholar] [CrossRef]
- Çulpan, H.C.; Şahin, Ü.; Can, G. A Step to Develop Heat-Health Action Plan: Assessing Heat Waves’ Impacts on Mortality. Atmosphere 2022, 13, 2126. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Change 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Environ. Change 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Lelieveld, J. Role of soil moisture in the amplification of climate warming in the Eastern Mediterranean and the Middle East. Clim. Res. 2014, 59, 27–37. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M. Extreme temperature trends on the west coast of Saudi Arabia. Atmos. Clim. Sci. 2012, 2, 11. [Google Scholar] [CrossRef]
- Abdou, A.E.A. Temperature Trend on Makkah, Saudi Arabia. Atmos. Clim. Sci. 2014, 4, 25. [Google Scholar] [CrossRef]
- Almazroui, M. Changes in temperature trends and extremes over Saudi Arabia for the period 1978–2019. Adv. Meteorol. 2020, 2020, 1–21–21. [Google Scholar] [CrossRef]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Change 2016, 137, 245–260. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Almazroui, M.; Bucchignani, E.; Driouech, F.; El Rhaz, K.; Kurnaz, L.; Nikulin, G.; Ntoumos, A.; Ozturk, T.; et al. Business-as-usual will lead to super and ultra-extreme heatwaves in the Middle East and North Africa. NPJ Clim. Atmos. Sci. 2021, 4, 20. [Google Scholar] [CrossRef]
- Wedler, M.; Pinto, J.G.; Hochman, A. More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. Sci. Total Environ. 2023, 870, 161883. [Google Scholar] [CrossRef] [PubMed]
HW Aspect | Long Name | Description | Unit |
---|---|---|---|
HWN | Heatwave Number | Number of individual HW events that occur each year. | Events |
HWF | Heatwave Frequency | Total number of days that contribute to the annual HW events as identified by HWN. | Days |
HWD | Heatwave Duration | Total number of days that contribute to the longest annual HW event identified by HWN. | Days |
HWM | Heatwave Magnitude | Average of daily temperature across all annual HW events identified by HWN. | °C (°C2 for EHF) |
HWA | Heatwave Amplitude | The highest daily temperature in the hottest annual HW event with highest HWM. | °C (°C2 for EHF) |
HWN | |||||
---|---|---|---|---|---|
Statistic | Index | 1982–1991 | 1992–2001 | 2002–2011 | 2012–2021 |
Decadal Sum | TX90 | 3:23 | 7:25 | 12:31 | 28:59 |
TN90 | 2:17 | 5:22 | 16:37 | 17:56 | |
EHF | 2:22 | 7:28 | 13:42 | 28:60 | |
Decadal Anomaly | TX90 | −15:−1 | −14:2 | −9:7 | 9:31 |
TN90 | −24:−6 | −15:4 | −9:15 | 5:34 | |
EHF | −24:−2 | −15:5 | −11:17 | 8:34 |
HWF | |||||
---|---|---|---|---|---|
Statistic | Index | 1982–1991 | 1992–2001 | 2002–2011 | 2012–2021 |
Decadal Sum | TX90 | 18:102 | 23:110 | 58:138 | 110:275 |
TN90 | 6:70 | 17:97 | 20:135 | 70:335 | |
EHF | 3:87 | 33:148 | 60:168 | 140:345 | |
Decadal Anomaly | TX90 | −85:−20 | −58:12 | −42:35 | 42:161 |
TN90 | −102:−17 | −90:25 | −47:55 | 25:225 | |
EHF | −120:−39 | −100:12 | −60:60 | 55:225 |
HWD | |||||
---|---|---|---|---|---|
Statistic | Index | 1982–1991 | 1992–2001 | 2002–2011 | 2012–2021 |
Decadal Sum | TX90 | 8:47 | 19:52 | 25:65 | 46:103 |
TN90 | 3:43 | 9:51 | 12:63 | 34:125 | |
EHF | 3:45 | 11:77 | 25:95 | 55:145 | |
Decadal Anomaly | TX90 | −25:−3 | −24:11 | −9:18 | 7:50 |
TN90 | −45:1 | −22:5 | −17:25 | 4:65 | |
EHF | −60:−9 | −42:12 | −19:25 | 18:85 |
HWM | |||||
---|---|---|---|---|---|
Statistic | Index | 1982–1991 | 1992–2001 | 2002–2011 | 2012–2021 |
Decadal Sum | TX90 | 125:362 | 155:424 | 220:456 | 288:463 |
TN90 | 25:250 | 25:250 | 90:280 | 175:305 | |
EHF | 1:25 | 2:50 | 5:71 | 7:58 | |
Decadal Anomaly | TX90 | −190:−15 | −128:65 | −60:110 | −10:152 |
TN90 | −158:10 | −126:65 | −66:133 | 19:130 | |
EHF | −20:8 | −15:5 | −6:30 | −1:22 |
HWM | |||||
---|---|---|---|---|---|
Statistic | Index | 1982–1991 | 1992–2001 | 2002–2011 | 2012–2021 |
Decadal Sum | TX90 | 125:373 | 160:444 | 185:470 | 295:470 |
TN90 | 28:260 | 30:275 | 85:310 | 189:337 | |
EHF | 1:64 | 10:115 | 13:163 | 15:185 | |
Decadal Anomaly | TX90 | −228:−25 | −110:60 | −85:115 | 38:150 |
TN90 | −172:5 | −136:66 | −75:70 | 15:145 | |
EHF | −71:1 | −50:3 | −12:51 | 5:79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labban, A.; Morsy, M.; Abdeldym, A.; Abdel Basset, H.; Al-Mutairi, M. Assessment of Changes in Heatwave Aspects over Saudi Arabia during the Last Four Decades. Atmosphere 2023, 14, 1667. https://doi.org/10.3390/atmos14111667
Labban A, Morsy M, Abdeldym A, Abdel Basset H, Al-Mutairi M. Assessment of Changes in Heatwave Aspects over Saudi Arabia during the Last Four Decades. Atmosphere. 2023; 14(11):1667. https://doi.org/10.3390/atmos14111667
Chicago/Turabian StyleLabban, Abdulhaleem, Mostafa Morsy, Abdallah Abdeldym, Heshmat Abdel Basset, and Motirh Al-Mutairi. 2023. "Assessment of Changes in Heatwave Aspects over Saudi Arabia during the Last Four Decades" Atmosphere 14, no. 11: 1667. https://doi.org/10.3390/atmos14111667
APA StyleLabban, A., Morsy, M., Abdeldym, A., Abdel Basset, H., & Al-Mutairi, M. (2023). Assessment of Changes in Heatwave Aspects over Saudi Arabia during the Last Four Decades. Atmosphere, 14(11), 1667. https://doi.org/10.3390/atmos14111667