Flood Simulation Study of China’s Data-Deficient Mountainous Watersheds Based on CMPA-Hourly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Rain Gauge Data
2.2.2. CMPA-Hourly
2.2.3. BTOPMC Input Data
2.3. Methodology
2.3.1. Hydrological Model
2.3.2. Evaluation Criteria
3. Results
3.1. Topographic Preprocessing and Sub-Basin Classification of the Qing Yi River Using BTOPMC Model
3.2. Calibration of BTOPMC Model
3.3. Flood Discharge Simulation Accuracy Analysis
3.3.1. General Evaluation
3.3.2. Case Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Todini, E. Flood Forecasting and Decision Making in the new Millennium. Where are We? Water Resour. Manag. 2017, 31, 3111–3129. [Google Scholar] [CrossRef]
- Beniston, M. Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophys. Res. Lett. 2009, 36, L07707. [Google Scholar] [CrossRef]
- Wang, C.P.; Huang, M.T.; Zhai, P.M. Change in drought conditions and its impacts on vegetation growth over the Tibetan Plateau. Adv. Clim. Change Res. 2021, 12, 9. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Tian, Z. Spatial and temporal distribution and trend in flood and drought disasters in east china. Environ. Res. 2020, 185, 109406. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A Spatial Downscaling Algorithm for Satellite-Based Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef]
- Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Chen, J.; Huang, G.; Chen, W. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models. J. Environ. Manag. 2021, 293, 112810. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features. Mon. Weather. Rev. 2015, 134, 2702–2721. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 287–296. [Google Scholar] [CrossRef]
- Tomoo, U.; Kazushi, S.; Takuji, K.; Shoichi, S.; Ken’Ichi, O.; Kazumasa, A. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data (2. Global Satellite Mapping of Precipitation (GSMaP) Project, Precipitation Measurements from Space). J. Meteorol. Soc. Jpn. Ser. II 2009, 87, 137–151. [Google Scholar]
- Hou, A.Y.; Skofronick-Jackson, G.; Stocker, E.F. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status. Bull. Am. Meteorol. Soc. 2013, 98, 1679–1695. [Google Scholar]
- Yang, M.; Liu, G.; Chen, T.; Chen, Y.; Xia, C. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China. Atmos. Res. 2020, 246, 105101. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation Analysis (TMPA). J. Hydrometeor. 2010, 3–22. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Liew, S.C.; Chia, A.S.; Kwoh, L.K. Spatio-Temporal Analysis of Climate Change Parameters Using Satellite Data for the Southeast Asian Region. In Proceedings of the 34th International Symposium on Remote Sensing of Environment-The GEOSS Era: Towards Operational Environmental Monitoring, Sydney, Australia, 10–13 April 2011. [Google Scholar]
- Prat, O.P.; Nelson, B.R. Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis. Water Resour. Res. 2013, 49, 7236–7254. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Hossain, F. Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 704–718. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Frank, E. On the use of real-time radar rainfall estimates for flood prediction in mountainous basins. J. Geophys. Res. Atmos. 2000, 105, 2269–2280. [Google Scholar] [CrossRef]
- Seo, D.J. Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol. 1998, 208, 37–52. [Google Scholar] [CrossRef]
- Djs, A.; Jpb, A.; Erj, B. Real-time estimation of mean field bias in radar rainfall data. J. Hydrol. 1999, 223, 131–147. [Google Scholar]
- Seo, D.J.; Breidenbach, J.P. Real-Time Correction of Spatially Nonuniform Bias in Radar Rainfall Data Using Rain Gauge Measurements. J. Hydrometeorol. 2002, 3, 93–111. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Yu, J.J.; Xiong, A.Y. An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method. Acta Meteorol. Sin. 2015, 73, 177–186. [Google Scholar]
- Yu, J.J.; Shen, Y.; Pan, Y.; Zhao, P.; Zhou, Z.J. Improvement of Satellite-based Precipitation Estimates over China Based on Probability Density Function Matching Method. J. Appl. Meteorol. Sci. 2013, 24, 544–553. [Google Scholar]
- Shen, Y.; Pan, Y.; Yu, J.J.; Zhao, P.; Zhou, Z.J. Quality assessment of hourly merged precipitation product over China. Trans. Atmos. Sci. 2013, 36, 37–46. [Google Scholar]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Zhan, X.; Houser, P.R.; Walker, J.P.; Crow, W.T. A method for retrieving high-resolution surface soil moisture from hydros L-band radiometer and Radar observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1534–1544. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A.Y. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. Atmos. 2011, 116, D21106. [Google Scholar] [CrossRef]
- Li, H. Integration of satellite precipitation data and deep learning for improving flash flood simulation in a poor-gauged mountainous catchment. Remote Sens. 2021, 13, 5083. [Google Scholar]
- Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos, C.A.G.; Kisi, O. Comparison of different methodologies for rainfall–runoff modeling: Machine learning vs conceptual approach. Nat. Hazards 2021, 105, 2987–3011. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Y.; Jiang, X.W.; Zhang, J. Analysis on the Climatic Characteristics of the Precipitation Variations at “Ya’an Sky-leakage”. J. Nat. Resour. 2016, 31, 343–353. [Google Scholar]
- Ren, Z.H.; Zhao, P.; Zhang, Q.; Zhang, Z.F.; Cao, L.J.; Yang, Y.R.; Zou, F.L.; Zhao, Y.F.; Zhao, H.M.; Chen, Z. Quality Control Procedures for Hourly Precipitation Data from Automatic Weather Stations in China. Meteorol. Mon. 2010, 36, 123–132. [Google Scholar]
- Wang, G.; Liu, L.; Ding, Y. Improvement of Radar Quantitative Precipitation Estimation Based on Real-Time Adjustments to Z-R Relationships and Inverse Distance Weighting Correction Schemes. Adv. Atmos. Sci. 2012, 3, 143–152. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. Atmos. 2010, 115, D02114. [Google Scholar] [CrossRef]
- LP DAAC-SRTMGL3. Available online: https://lpdaac.usgs.gov/products/srtmgl3v003/ (accessed on 10 December 2020).
- LP DAAC-MCD12Q1. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 10 December 2020).
- FAO Digital Soil Map of the World (DSMW). Available online: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1026564/ (accessed on 10 December 2020).
- NOAA Climate Data Record (CDR) of Normalized Difference Vegetation Index (NDVI), Version 4 (Version Superseded). Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00813 (accessed on 10 December 2020).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Ao, T. Development of a Distributed Hydrological Model for Large River Basins and Its Application to Southeast Asian Rivers. Ph.D. Thesis, University of Yamanashi, Kofu, Japan, 2001. [Google Scholar]
- Takeuchi, K.L.; Ao, T.; Ish Idaira, H. Introduction of Block-Wise Use of TOPMODEL and Muskingum-Cunge Method for the HydroEnvironmental Simulation of a Large Ungauged Basin. Hydrol. Sci. J. 1999, 44, 633–646. [Google Scholar] [CrossRef]
- Shrestha, S.; Bastola, S.; Babel, M.S.; Dulal, K.N.; Magome, J.; Hapuarachchi, H.A.P.; Kazama, F.; Ishidaira, H.; Takeuchi, K. The assessment of spatial and temporal transferability of a physically based distributed hydrological model parameters in different physiographic regions of Nepal. J. Hydrol. 2007, 347, 153–172. [Google Scholar] [CrossRef]
- Ao, T.; Ishidaira, H.; Takeuchi, K. Study of distributed runoff simulation model based on block type TOPMODEL and muskingum-cunge method. Proc. Hydr. Eng. 1999, 43, 7–12. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirby, M. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Franke, B.R. Scattered data interpolation: Tests of some methods. Math. Comp. 1982, 38, 181–200. [Google Scholar]
- GB/T 22482-2008; Standard for Hydrological Information and Hydrological Forecasting.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. China National Standardization Administration: Beijing, China, 2009.
Station Number | Longitude | Latitude | Station Name | |
---|---|---|---|---|
Weather Stations | 56273 | 102.82 | 30.38 | Baoxing |
56278 | 102.77 | 30.07 | Tianquan | |
56279 | 102.93 | 30.15 | Lushan | |
56280 | 103.12 | 30.08 | Mingshan | |
56287 | 103 | 29.98 | Ya’an | |
56373 | 102.85 | 29.78 | Yingjing | |
56380 | 103.37 | 29.92 | Hongya | |
56382 | 103.6 | 29.73 | Jiajiang | |
56384 | 103.48 | 29.6 | Emei | |
56385 | 103.33 | 29.52 | Emeishan | |
Discharge stations | 60611950 | 103.38 | 29.90 | Hongya |
60611500 | 102.96 | 30.00 | Duoyingping | |
60612300 | 102.85 | 29.82 | Yinjing | |
60612200 | 102.75 | 30.08 | Tianquan | |
60612070 | 102.92 | 30.14 | Lushan | |
60611379 | 102.81 | 30.37 | Baoxing | |
60612000 | 103.54 | 29.75 | Jiajiang |
Month | CC | Bias (%) | RMSE (mm/h) |
---|---|---|---|
1 | 0.988 | 1.30 | 4.488 |
2 | 0.990 | 1.51 | 5.393 |
3 | 0.991 | 5.26 | 7.602 |
4 | 0.992 | 4.83 | 10.332 |
5 | 0.988 | 4.71 | 14.742 |
6 | 0.983 | 3.72 | 20.525 |
7 | 0.959 | 4.77 | 22.156 |
8 | 0.959 | 6.34 | 20.861 |
9 | 0.971 | 6.65 | 14.097 |
10 | 0.970 | 6.75 | 10.173 |
11 | 0.979 | 6.99 | 5.897 |
12 | 0.981 | 3.06 | 4.407 |
Source | Resolution | Reference | |
---|---|---|---|
Digital Elevation Model (DEM) | NASA’s Shuttle Radar Topography Mission (SRTM) | 3s | [35] |
land cover | International Geosphere-Biosphere Program (IGBP | 500 m × 500 m | [36] |
Soil type | The Food and Agriculture Organization (FAO) | 1 km × 1 km | [37] |
Normalized Difference Vegetation Index (NDVI) | National Oceanic and Atmospheric Administration (NOAA) of the United States | 0.05 ° | [38] |
Meteorological data | Climate Research Unit (CRU) | - | [39] |
Accuracy Grade | Grade A | Grade B |
---|---|---|
Passing Rate | QR ≥ 85.0 | 85.0 > QR ≥ 70.0 |
Determinacy factor | R2 > 0.90 | 0.90 ≥ R2 ≥ 0.70 |
Parameter | Sub-Basins | Calibration Results (CMPA) | Calibration Results (Gauge) |
---|---|---|---|
D0clay | 0–7 | 1.456 | 0.970 |
D0sand | 0–7 | 0.687 | 0.694 |
D0silt | 0–7 | 0.619 | 0.742 |
SDbar | 0 | 0.082 | 0.041 |
1 | 0.241 | 0.883 | |
2 | 0.086 | 0.054 | |
3 | 0.428 | 0.218 | |
4 | 0.502 | 0.358 | |
5 | 0.464 | 0.126 | |
6 | 0.585 | 0.431 | |
m | 7 | 0.158 | 0.406 |
0 | 0.001 | 0.001 | |
1 | 0.095 | 0.014 | |
2 | 0.006 | 0.002 | |
3 | 0.100 | 0.100 | |
4 | 0.099 | 0.100 | |
5 | 0.099 | 0.083 | |
noc | 6 | 0.096 | 0.092 |
7 | 0.058 | 0.047 | |
0 | 0.051 | 0.024 | |
1 | 0.500 | 0.490 | |
2 | 0.007 | 0.014 | |
3 | 0.005 | 0.468 | |
4 | 0.493 | 0.500 | |
α | 5 | 0.493 | 0.001 |
6 | 0.499 | 0.499 | |
7 | 0.344 | 0.411 | |
0 | 2.802 | −3.417 | |
1 | 4.519 | 6.094 | |
2 | −2.911 | 3.093 | |
3 | −7.310 | −4.653 |
Flooding Field | Gauge | CMPA | Discharge (m3/s) | |||||
---|---|---|---|---|---|---|---|---|
(%) | (h) | NSE | (%) | NSE | ||||
calibration | 4 August 2015 | 15 | 1 | 0.81 | 4 | 1 | 0.74 | 3810 |
22 August 2019 | 16 | 2 | 0.6 | 13 | 2 | 0.74 | 12200 | |
18 August 2020 | 12 | 2 | 0.65 | 11 | 1 | 0.86 | 18100 | |
verification | 6 August 2019 | 19 | 0 | 0.74 | 8 | 3 | 0.84 | 9470 |
14 August 2019 | 17 | 1 | 0.58 | 10 | 2 | 0.72 | 6060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Chen, T.; Ao, T.; Yang, K. Flood Simulation Study of China’s Data-Deficient Mountainous Watersheds Based on CMPA-Hourly. Atmosphere 2023, 14, 1666. https://doi.org/10.3390/atmos14111666
Yuan Y, Chen T, Ao T, Yang K. Flood Simulation Study of China’s Data-Deficient Mountainous Watersheds Based on CMPA-Hourly. Atmosphere. 2023; 14(11):1666. https://doi.org/10.3390/atmos14111666
Chicago/Turabian StyleYuan, Yibin, Ting Chen, Tianqi Ao, and Kebi Yang. 2023. "Flood Simulation Study of China’s Data-Deficient Mountainous Watersheds Based on CMPA-Hourly" Atmosphere 14, no. 11: 1666. https://doi.org/10.3390/atmos14111666
APA StyleYuan, Y., Chen, T., Ao, T., & Yang, K. (2023). Flood Simulation Study of China’s Data-Deficient Mountainous Watersheds Based on CMPA-Hourly. Atmosphere, 14(11), 1666. https://doi.org/10.3390/atmos14111666