Comparing the Effects of Wildfire and Hazard Reduction Burning Area on Air Quality in Sydney
Abstract
:1. Introduction
- Is there a difference between the effect of HRB area and wildfire area on air pollution in Sydney, as measured by 24 h mean PM2.5?
- Does increasing HRB treatment increase or decrease overall (HRB + wildfire) PM levels in Sydney (the trade-off between HRB and wildfires)?
- What is driving the nature of the trade-off?
2. Materials and Methods
2.1. Study Area and Data
2.2. Statistical Modelling
3. Results
3.1. Data Summary
3.2. Generalised Linear Modelling
3.3. Trade-Off
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Results
Model | Term | Estimate | Std.Error | t Value | p Value |
---|---|---|---|---|---|
Total area (AIC = 5066, d.e = 53%) | intercept | 1.2393 | 0.1423 | 8.7094 | 0 |
lag PM2.5 | 0.0239 | 0.0019 | 12.7494 | 0 | |
ventilation index | −0.0001 | 0 | −4.8575 | 0 | |
temperature | −0.0079 | 0.0048 | −1.6578 | 0.0977 | |
log hectares all | 0.3551 | 0.0486 | 7.3039 | 0 | |
fire type (WF) | 0.1117 | 0.1649 | 0.6776 | 0.4982 | |
u10 coast | −0.0319 | 0.0081 | −3.9601 | 0.0001 | |
v10 coast | −0.0099 | 0.0063 | −1.5651 | 0.1179 | |
u10 Katoomba | 0.0251 | 0.0138 | 1.8161 | 0.0697 | |
v10 Katoomba | −0.0362 | 0.0277 | −1.3059 | 0.1919 | |
log hectares all:fire type (WF) | −0.0219 | 0.0578 | −0.3794 | 0.7045 | |
u10 coast:v10 coast | −0.0002 | 0.0012 | −0.137 | 0.8911 | |
u10 Katoomba:v10 Katoomba | −0.0076 | 0.0082 | −0.9288 | 0.3532 |
References
- Bradstock, R.A.; Williams, R.J.; Gill, A.M. Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; CSIRO Publishing: Collingwood, Australia, 2012; ISBN 0-643-10482-8. [Google Scholar]
- Fernandes, P.M.; Botelho, H.S. A Review of Prescribed Burning Effectiveness in Fire Hazard Reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef]
- Carter, M.; Howard, T.; Haylock, K.; Philpotts, V.; Richards, J. Independent Investigation of the Lancefield-Cobaw Fire. Rep. Indep. Lancefield-Cobaw Fire Investig. Team 2015. Available online: https://www.ffm.vic.gov.au/__data/assets/pdf_file/0002/20000/Independent-investigation-into-Lancefield-Cobaw-fire.pdf (accessed on 27 November 2021).
- Johnston, F.H.; Borchers-Arriagada, N.; Morgan, G.G.; Jalaludin, B.; Palmer, A.J.; Williamson, G.J.; Bowman, D.M.J.S. Unprecedented Health Costs of Smoke-Related PM2.5 from the 2019–20 Australian Megafires. Nat. Sustain. 2021, 4, 42–47. [Google Scholar] [CrossRef]
- Matz, C.J.; Egyed, M.; Xi, G.; Racine, J.; Pavlovic, R.; Rittmaster, R.; Henderson, S.B.; Stieb, D.M. Health Impact Analysis of PM2.5 from Wildfire Smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020, 725, 138506. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; Defries, R.S.; Kinney, P.; Bowman, D.M.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef]
- Jones, B.A.; McDermott, S.; Champ, P.A.; Berrens, R.P. More Smoke Today for Less Smoke Tomorrow? We Need to Better Understand the Public Health Benefits and Costs of Prescribed Fire. Int. J. Wildland Fire 2022, 31, 918–926. [Google Scholar] [CrossRef]
- Williamson, G.; Bowman, D.; Price, O.; Henderson, S.; Johnston, F. A Transdisciplinary Approach to Understanding the Health Effects of Wildfire and Prescribed Smoke. Environ. Res. Lett. 2016, 11, 125009. [Google Scholar] [CrossRef]
- Price, O.F.; Pausas, J.G.; Govender, N.; Flannigan, M.; Fernandes, P.M.; Brooks, M.L.; Bird, R.B. Global Patterns in Fire Leverage: The Response of Annual Area Burnt to Previous Fire. Int. J. Wildland Fire 2015, 24, 297–306. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. Quantifying the Influence of Fuel Age and Weather on the Annual Extent of Unplanned Fires in the Sydney Region of Australia. Int. J. Wildland Fire 2011, 20, 142–151. [Google Scholar] [CrossRef]
- Price, O.F.; Nolan, R.H.; Samson, S.A. Fuel Consumption Rates in Resprouting Eucalypt Forest during Hazard Reduction Burns, Cultural Burns and Wildfires. For. Ecol. Manag. 2022, 505, 119894. [Google Scholar] [CrossRef]
- Liu, X.; Huey, L.G.; Yokelson, R.J.; Selimovic, V.; Simpson, I.J.; Müller, M.; Jimenez, J.L.; Campuzano-Jost, P.; Beyersdorf, A.J.; Blake, D.R.; et al. Airborne Measurements of Western U.S. Wildfire Emissions: Comparison with Prescribed Burning and Air Quality Implications. J. Geophys. Res. Atmos. 2017, 122, 6108–6129. [Google Scholar] [CrossRef]
- Price, O.F.; Purdam, P.J.; Williamson, G.J.; Bowman, D.M.J.S. Comparing the Height and Area of Wild and Prescribed Fire Particle Plumes in South-East Australia Using Weather Radar. Int. J. Wildland Fire 2018, 27, 525–537. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. The Spatial Domain of Wildfire Risk and Response in the Wildland Urban Interface in Sydney, Australia. Nat. Hazards Earth Syst. Sci. 2013, 13, 3385–3393. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F. Statistical Modelling of Air Quality Impacts from Individual Forest Fires in New South Wales, Australia. Nat. Hazards Earth Syst. Sci. 2022, 22, 4039–4062. [Google Scholar] [CrossRef]
- Borchers-Arriagada, N.; Bowman, D.M.J.S.; Price, O.; Palmer, A.J.; Samson, S.; Clarke, H.; Sepulveda, G.; Johnston, F.H. Smoke Health Costs and the Calculus for Wildfires Fuel Management: A Modelling Study. Lancet Planet. Health 2021, 5, e608–e619. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F. Prediction of Air Quality in Sydney, Australia as a Function of Forest Fire Load and Weather Using Bayesian Statistics. PLoS ONE 2022, 17, e0272774. [Google Scholar] [CrossRef]
- Price, O.F.; Williamson, G.J.; Henderson, S.B.; Johnston, F.; Bowman, D.M.J.S. The Relationship between Particulate Pollution Levels in Australian Cities, Meteorology, and Landscape Fire Activity Detected from MODIS Hotspots. PLoS ONE 2012, 7, e47327. [Google Scholar] [CrossRef]
- Murphy, B.P.; Bradstock, R.A.; Boer, M.M.; Carter, J.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Russell-Smith, J.; Williamson, G.J.; Bowman, D.M. Fire Regimes of Australia: A Pyrogeographic Model System. J. Biogeogr. 2013, 40, 1048–1058. [Google Scholar] [CrossRef]
- Broome, R.A.; Johnstone, F.H.; Horsley, J.; Morgan, G.G. A Rapid Assessment of the Impact of Hazard Reduction Burning around Sydney, May 2016. Med. J. Aust. 2016, 205, 407–408. [Google Scholar] [CrossRef]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme Air Pollution Events from Bushfires and Dust Storms and Their Association with Mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Department of Planning and Environment. NPWS Fire History—Wildfires and Prescribed Burns. Available online: https://datasets.seed.nsw.gov.au/dataset/fire-history-wildfires-and-prescribed-burns-1e8b6 (accessed on 1 January 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I. ERA5 Hourly Data on Single Levels from 1979 to Present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2018, 10. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2020; Scientific Research Publishing: Wuhan, China, 2020. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. Ph.D. Thesis, University of Regensburg, Regensburg, Germany, 2022. [Google Scholar]
- Australian Government National Environment Protection (Ambient Air Quality) Measure: F2021C00475; Commonwealth of Australia: Canberra, Australia, 2021.
- State of Victoria, E.P.A. PM2.5 Particles in the Air | Environment Protection Authority Victoria. Available online: https://www.epa.vic.gov.au/for-community/environmental-information/air-quality/pm25-particles-in-the-air (accessed on 26 September 2022).
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s Catastrophic 2019/20 Bushfire Season on Communities and Environment. Retrospective Analysis and Current Trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F.; Fox-Hughes, P. The Influence of Regional Wind Patterns on Air Quality during Forest Fires near Sydney, Australia. Sci. Total Environ. 2023, 905, 167335. [Google Scholar] [CrossRef]
- Navarro, K.M.; Schweizer, D.; Balmes, J.R.; Cisneros, R. A Review of Community Smoke Exposure from Wildfire Compared to Prescribed Fire in the United States. Atmosphere 2018, 9, 185. [Google Scholar] [CrossRef]
- Price, O.F.; Forehead, H. Smoke Patterns around Prescribed Fires in Australian Eucalypt Forests, as Measured by Low-Cost Particulate Monitors. Atmosphere 2021, 12, 1389. [Google Scholar] [CrossRef]
- Price, O.F.; Rahmani, S.; Samson, S. Particulate Levels Underneath Landscape Fire Smoke Plumes in the Sydney Region of Australia. Fire 2023, 6, 86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storey, M.A.; Price, O.F. Comparing the Effects of Wildfire and Hazard Reduction Burning Area on Air Quality in Sydney. Atmosphere 2023, 14, 1657. https://doi.org/10.3390/atmos14111657
Storey MA, Price OF. Comparing the Effects of Wildfire and Hazard Reduction Burning Area on Air Quality in Sydney. Atmosphere. 2023; 14(11):1657. https://doi.org/10.3390/atmos14111657
Chicago/Turabian StyleStorey, Michael A., and Owen F. Price. 2023. "Comparing the Effects of Wildfire and Hazard Reduction Burning Area on Air Quality in Sydney" Atmosphere 14, no. 11: 1657. https://doi.org/10.3390/atmos14111657
APA StyleStorey, M. A., & Price, O. F. (2023). Comparing the Effects of Wildfire and Hazard Reduction Burning Area on Air Quality in Sydney. Atmosphere, 14(11), 1657. https://doi.org/10.3390/atmos14111657