Comparison of NO2 and BC Predictions Estimated Using Google Street View-Based and Conventional European-Wide LUR Models in Copenhagen, Denmark
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Air Pollution Data
2.2.1. Dataset 1: GSV-Based Mixed-Effects Model LUR Predictions (Google-MM)
2.2.2. Dataset 2: Air Pollution Data from European-Wide ELAPSE Project LUR Models (EUW-LUR)
2.3. Statistical Analyses
3. Results
4. Discussion
Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I. Global burden of 87 risk factors in 204 countries and territories, 1990–2019, a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., 3rd; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef]
- World Health Organization. Burden of Disease from Ambient Air Pollution for 2016, Version 2. 2018. Available online: https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-health/aap_bod_results_may2018_final.pdf (accessed on 9 August 2023).
- Brunekreef, B.; Strak, M.; Chen, J.; Andersen, Z.J.; Atkinson, R.; Bauwelinck, M.; Bellander, T.; Boutron, M.-C.; Brandt, J.; Carey, I.; et al. Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM2.5, BC, NO2, and O3, An Analysis of European Cohorts in the ELAPSE Project. Res. Rep. Health Eff. Inst. 2021, 2021, 1–127. [Google Scholar] [PubMed]
- Huang, S.; Li, H.; Wang, M.; Qian, Y.; Steenland, K.; Caudle, W.M.; Liu, Y.; Sarnat, J.; Papatheodorou, S.; Shi, L. Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Sci. Total Environ. 2021, 776, 145968. [Google Scholar] [CrossRef]
- So, R.; Andersen, Z.J.; Chen, J.; Stafoggia, M.; de Hoogh, K.; Katsouyanni, K.; Vienneau, D.; Rodopoulou, S.; Samoli, E.; Lim, Y.-H.; et al. Long-term exposure to air pollution and mortality in a Danish nationwide administrative cohort study: Beyond mortality from cardiopulmonary disease and lung cancer. Environ. Int. 2022, 164, 107241. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Oftedal, B.; Chen, J.; Rodopoulou, S.; Renzi, M.; Atkinson, R.W.; Bauwelinck, M.; Klompmaker, J.O.; Mehta, A.; Vienneau, D.; et al. Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: Results from seven large European cohorts within the ELAPSE project. Lancet Planet. Health 2022, 6, e9–e18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Wei, J.; Zhan, Y.; Liu, L.; Yang, Z.; Zhang, Y.; Liu, R.; Ma, Z. Long-term exposure to ambient NO2 and adult mortality: A nationwide cohort study in China. J. Adv. Res. 2022, 41, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhu, Q.; Wang, Y.; Hao, H.; Zhang, H.; Schwartz, J.; Amini, H.; van Donkelaar, A.; Martin, R.V.; Steenland, K.; et al. Incident dementia and long-term exposure to constituents of fine particle air pollution: A national cohort study in the United States. Proc. Natl. Acad. Sci. USA 2023, 120, e2211282119. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 9 August 2023).
- Goshua, A.; Akdis, C.A.; Nadeau, K.C. World Health Organization global air quality guideline recommendations: Executive summary. Allergy 2022, 77, 1955–1960. [Google Scholar] [CrossRef]
- De Hoogh, K.; Chen, J.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Bauwelinck, M.; van Donkelaar, A.; Hvidtfeldt, U.A.; Katsouyanni, K.; et al. Spatial PM2.5, NO2, O3 and BC models for Western Europe—Evaluation of spatiotemporal stability. Environ. Int. 2018, 120, 81–92. [Google Scholar] [CrossRef]
- Liu, S.; Jørgensen, J.T.; Ljungman, P.; Pershagen, G.; Bellander, T.; Leander, K.; Magnusson, P.K.E.; Rizzuto, D.; Hvidtfeldt, U.A.; Raaschou-Nielsen, O.; et al. Long-term exposure to low-level air pollution and incidence of asthma: The ELAPSE project. Eur. Respir. J. 2021, 57, 2003099. [Google Scholar] [CrossRef]
- Liu, S.; Jørgensen, J.T.; Ljungman, P.; Pershagen, G.; Bellander, T.; Leander, K.; Magnusson, P.K.; Rizzuto, D.; Hvidtfeldt, U.A.; Raaschou-Nielsen, O.; et al. Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease: The ELAPSE project. Environ. Int. 2021, 146, 106267. [Google Scholar] [CrossRef] [PubMed]
- Strak, M.; Weinmayr, G.; Rodopolou, S.; Tewis, M.; de Hoogh, K.; Forastiere, F.; Andersen, Z.; Brunekreef, B.; Hoek, G.; Katsouyanni, K. Natural and cause-specific mortality and low-level air pollution in a pooled cohort of 392,826 participants in Europe: The ELAPSE project. Environ. Epidemiol. 2019, 3, 383–384. [Google Scholar]
- Strak, M.; Weinmayr, G.; Rodopoulou, S.; Chen, J.; de Hoogh, K.; Andersen, Z.J.; Atkinson, R.; Bauwelinck, M.; Bekkevold, T.; Bellander, T.; et al. Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: Pooled analysis. BMJ 2021, 374, n1904. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Env. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Kerckhoffs, J.; Khan, J.; Hoek, G.; Yuan, Z.; Ellermann, T.; Hertel, O.; Ketzel, M.; Jensen, S.S.; Meliefste, K.; Vermeulen, R. Mixed-Effects Modeling Framework for Amsterdam and Copenhagen for Outdoor NO2 Concentrations Using Measurements Sampled with Google Street View Cars. Environ. Sci. Technol. 2022, 56, 7174–7184. [Google Scholar] [CrossRef] [PubMed]
- Kerckhoffs, J.; Khan, J.; Hoek, G.; Yuan, Z.; Hertel, O.; Ketzel, M.; Jensen, S.S.; Al Hasan, F.; Meliefste, K.; Vermeulen, R. Hyperlocal Variation of Nitrogen Dioxide, Black Carbon, and Ultrafine Particles measured with Google Street View Cars in Amsterdam and Copenhagen. Environ. Int. 2022, 170, 107575. [Google Scholar] [CrossRef] [PubMed]
- Cesaroni, G.; Porta, D.; Badaloni, C.; Stafoggia, M.; Eeftens, M.; Meliefste, K.; Forastiere, F. Nitrogen dioxide levels estimated from land use regression models several years apart and association with mortality in a large cohort study. Environ. Health 2012, 11, 48. [Google Scholar] [CrossRef]
- Eeftens, M.; Beelen, R.; Fischer, P.; Brunekreef, B.; Meliefste, K.; Hoek, G. Stability of measured and modelled spatial contrasts in NO2 over time. Occup. Environ. Med. 2011, 68, 765. [Google Scholar] [CrossRef]
- Wang, R.; Henderson, S.B.; Sbihi, H.; Allen, R.W.; Brauer, M. Temporal stability of land use regression models for traffic-related air pollution. Atmos. Environ. 2013, 64, 312–319. [Google Scholar] [CrossRef]
- Statistics Denmark Documentation of Statistics for Land Accounts 2018. 2018. Available online: https://www.dst.dk/Site/Dst/Udgivelser/GetPubFile.aspx?id=27468&sid=gnatuk (accessed on 10 August 2023).
- Worldpop. Worldpop: Population Counts. 2020. Available online: https://www.worldpop.org/project/categories?id=3 (accessed on 11 January 2023).
- Liu, L.; Jensen, M.B. Climate resilience strategies of Beijing and Copenhagen and their links to sustainability. Water Policy 2017, 19, 997–1013. [Google Scholar] [CrossRef]
- Kerckhoffs, J.; Hoek, G.; Messier, K.P.; Brunekreef, B.; Meliefste, K.; Klompmaker, J.O.; Vermeulen, R. Comparison of Ultrafine Particle and Black Carbon Concentration Predictions from a Mobile and Short-Term Stationary Land-Use Regression Model. Env. Environ. Sci. Technol. 2016, 50, 12894–12902. [Google Scholar] [CrossRef] [PubMed]
- Kebabian, P.L.; Wood, E.C.; Herndon, S.C.; Freedman, A. A practical alternative to chemiluminescence-based detection of nitrogen dioxide: Cavity attenuated phase shift spectroscopy. Env. Environ. Sci. Technol. 2008, 42, 6040–6045. [Google Scholar] [CrossRef] [PubMed]
- Ellermann, T.; Khan, J.; Ketzel, M.; Jensen, S.S.; Hertel, O. Air View Data on the Spatial Distribution of Air Pollution in Copenhagen; Aarhus University, DCE—Danish Centre for Environment and Energy: Aarhus, Denmark, 2021; p. 27s. [Google Scholar]
- Jensen, S.S. Kildebidrag til Sundhedsskadelig Luftforurening i København; DCE-Nationalt Center for Miljø og Energi: Aarhus, Denmark, 2013. [Google Scholar]
- Amini, H. WHO Air Quality Guidelines Need to be Adopted. Int. J. Public Health 2021, 66, 1604483. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Gehring, U.; De Matteis, S.; Melen, E.; Vicedo-Cabrera, A.M.; Katsouyanni, K.; Yorgancioglu, A.; Ulrik, C.S.; Medina, S.; Hansen, K.; et al. Clean air for healthy lungs—An urgent call to action: European Respiratory Society position on the launch of the WHO 2021 Air Quality Guidelines. Eur. Respir. J. 2021, 58, 2102447. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Boogaard, H.; de Nazelle, A.; Andersen, Z.J.; Abramson, M.; Brauer, M.; Brunekreef, B.; Forastiere, F.; Huang, W.; Kan, H.; et al. WHO Air Quality Guidelines 2021—Aiming for Healthier Air for all: A Joint Statement by Medical, Public Health, Scientific Societies and Patient Representative Organisations. Int. J. Public Health 2021, 66, 1604465. [Google Scholar] [CrossRef] [PubMed]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.; et al. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef]
- Cyrys, J.; Heinrich, J.; Hoek, G.; Meliefste, K.; Lewné, M.; Gehring, U.; Bellander, T.; Fischer, P.; van Vliet, P.; Brauer, M.; et al. Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and absorbance. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 134–143. [Google Scholar] [CrossRef]
- Sharma, S.; Brook, J.R.; Cachier, H.; Chow, J.; Gaudenzi, A.; Lu, G. Light absorption and thermal measurements of black carbon in different regions of Canada. J. Geophys. Res. Atmos. 2002, 107, AAC 11-1–AAC 11-11. [Google Scholar] [CrossRef]
- Utrecht University; Google. Google Environmental Insights Explorer. 2021. Available online: https://insights.sustainability.google/labs/airquality (accessed on 10 August 2023).
Pollutant | Level | # Of Observations | Minimum | 25th | 50th | Mean | 75th | 90th | Maximum | Ratio of Percentile 97.5/2.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | - | Google-MM | EUW-LUR19 | Google-MM | EUW-LUR19 | Google-MM | EUW-LUR19 | Google-MM | EUW-LUR19 | Google-MM | EUW-LUR19 | Google-MM | EUW-LUR19 | Google-MM | EUW-LUR19 | Google-MM | EUW-LUR19 | |
NO2 | Street Level | 30,312 | 8 | 8.1 | 12 | 18.8 | 15 | 20.8 | 17.3 | 20.9 | 19 | 22.6 | 28 | 24.9 | 62 | 39.4 | 4.5 | 2.1 |
NO2 | Residential | 76,752 | 8 | 8.5 | 12 | 18.7 | 14 | 20.6 | 15.0 | 20.4 | 17 | 22.0 | 21 | 23.3 | 52 | 36.4 | 3.1 | 1.7 |
BC | Street Level | 30,312 | 0.6 | 0.7 | 0.8 | 1.4 | 0.9 | 1.6 | 1.1 | 1.6 | 1.2 | 1.8 | 1.7 | 1.9 | 3.4 | 2.9 | 3.4 | 2.3 |
BC | Residential | 76,752 | 0.6 | 0.8 | 0.8 | 1.4 | 0.9 | 1.6 | 0.99 | 1.6 | 1.1 | 1.7 | 1.3 | 1.9 | 3.4 | 2.8 | 2.4 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayebi, S.; Kerckhoffs, J.; Khan, J.; de Hoogh, K.; Chen, J.; Taghavi-Shahri, S.M.; Bergmann, M.L.; Cole-Hunter, T.; Lim, Y.-H.; Mortensen, L.H.; et al. Comparison of NO2 and BC Predictions Estimated Using Google Street View-Based and Conventional European-Wide LUR Models in Copenhagen, Denmark. Atmosphere 2023, 14, 1602. https://doi.org/10.3390/atmos14111602
Tayebi S, Kerckhoffs J, Khan J, de Hoogh K, Chen J, Taghavi-Shahri SM, Bergmann ML, Cole-Hunter T, Lim Y-H, Mortensen LH, et al. Comparison of NO2 and BC Predictions Estimated Using Google Street View-Based and Conventional European-Wide LUR Models in Copenhagen, Denmark. Atmosphere. 2023; 14(11):1602. https://doi.org/10.3390/atmos14111602
Chicago/Turabian StyleTayebi, Shali, Jules Kerckhoffs, Jibran Khan, Kees de Hoogh, Jie Chen, Seyed Mahmood Taghavi-Shahri, Marie L. Bergmann, Thomas Cole-Hunter, Youn-Hee Lim, Laust H. Mortensen, and et al. 2023. "Comparison of NO2 and BC Predictions Estimated Using Google Street View-Based and Conventional European-Wide LUR Models in Copenhagen, Denmark" Atmosphere 14, no. 11: 1602. https://doi.org/10.3390/atmos14111602
APA StyleTayebi, S., Kerckhoffs, J., Khan, J., de Hoogh, K., Chen, J., Taghavi-Shahri, S. M., Bergmann, M. L., Cole-Hunter, T., Lim, Y. -H., Mortensen, L. H., Hertel, O., Reeh, R., Schwartz, J., Hoek, G., Vermeulen, R., Jovanovic Andersen, Z., Loft, S., & Amini, H. (2023). Comparison of NO2 and BC Predictions Estimated Using Google Street View-Based and Conventional European-Wide LUR Models in Copenhagen, Denmark. Atmosphere, 14(11), 1602. https://doi.org/10.3390/atmos14111602