Hotspot Detection and Estimation of Methane Emissions from Landfill Final Cover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study Site
2.2. Methane Concentration Distribution Test
2.3. Methane Emission Test
3. Results and Discussion
3.1. Locations of Methane Hotspots
3.2. Effects of Rainfall on Methane Concentration Distribution
3.3. Effects of Atmospheric Pressure on Methane Emission
3.4. Influence of Ground Temperature
3.5. Relationship between Ambient Methane Concentration and Methane Emission
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zarin, R.; Azmat, M.; Naqvi, S.R.; Saddique, Q.; Ullah, S. Landfill site selection by integrating fuzzy logic, AHP, and WLC method based on multi-criteria decision analysis. Environ. Sci. Pollut. Res. 2021, 28, 19726–19741. [Google Scholar] [CrossRef] [PubMed]
- Slezak, R.; Krzystek, L.; Ledakowicz, S. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Manag. 2015, 43, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Amini, H.R.; Reinhart, D.R. Regional prediction of long-term landfill gas to energy potential. Waste Manag. 2011, 31, 2020–2026. [Google Scholar] [CrossRef]
- Kashyap, R.K.; Chugh, P.; Nandakumar, T. Opportunities & challenges in capturing landfill gas from an active and un-scientifically managed land fill site—A case study. Procedia Environ. Sci. 2016, 35, 348–367. [Google Scholar]
- Ghosh, A.; Kumar, S.; Das, J. Impact of leachate and landfill gas on the ecosystem and health: Research trends and the way forward towards sustainability. J. Environ. Manag. 2023, 336, 117708. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xu, H.; Liu, J.; Nie, X.; Li, X.; Shu, T.; Bai, B.; Ma, X.; Yao, Y. Greenhouse Gas Emissions in the Process of Landfill Disposal in China. Energies 2022, 15, 6711. [Google Scholar] [CrossRef]
- Rosa, E.A.; Dietz, T. Human drivers of national greenhouse-gas emissions. Nat. Clim. Chang. 2012, 2, 581–586. [Google Scholar] [CrossRef]
- IPCC Sixth Assessment Report (Working Group 1 Contribution): Climate Change 2021-The Physical Science Basis|SDG Help Desk. 2021. Available online: http://sdghelpdesk.unescap.org/e-library/ipcc-sixth-assessment-report-working-group-1-contribution-climate-change-2021-physical (accessed on 22 September 2021).
- Kriipsalu, M.; Somani, M.; Pehme, K.; Tamm, O.; Truu, J.; Truu, M.; Orupold, K. Performance of biocover in controlling methane emissions from landfill: A decade of full-scale investigation. Process Saf. Environ. Prot. 2023, 172, 486–495. [Google Scholar] [CrossRef]
- Barlaz, M.A.; Chanton, J.P.; Green, R.B. Controls on landfill gas collection efficiency: Instantaneous and lifetime performance. J. Air Waste Manag. Assoc. 2009, 59, 1399–1404. [Google Scholar] [CrossRef]
- Kavazanjian, E., Jr.; Gutierrez, A. Large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading. Waste Manag. 2017, 68, 252–262. [Google Scholar] [CrossRef]
- Bouazza, A.; Vangpaisal, T.; Abuel-Naga, H.; Kodikara, J. Analytical modelling of gas leakage rate through a geosynthetic clay liner–geomembrane composite liner due to a circular defect in the geomembrane. Geotext. Geomembr. 2008, 26, 122–129. [Google Scholar] [CrossRef]
- Gilson-Beck, A.; Giroud, J.P. A quantification of the short-term reliability of HDPE geomembrane seaming methods. Geosynth. Int. 2022, 29, 337–341. [Google Scholar] [CrossRef]
- Gilson, A. Advancements in field testing for locating geomembrane installation damage. Int. J. Geosynth. Ground Eng. 2021, 7, 72. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, H.; Zhang, M.; Wu, W.; Liu, Y.; Feng, J. Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction. Waste Manag. 2011, 31, 1059–1064. [Google Scholar] [CrossRef]
- Shen, S.; Chen, Y.; Zhan, L.; Xie, H.; Bouazza, A.; He, F.; Zuo, X. Methane hotspot localization and visualization at a large-scale Xi’an landfill in China: Effective tool for landfill gas management. J. Environ. Manag. 2018, 225, 232–241. [Google Scholar] [CrossRef]
- Xie, H.; Fei, S.; He, H.; Zhang, A.; Ni, J.; Chen, Y. Field investigation and numerical modelling of gas extraction in a heterogeneous landfill with high leachate level. Environ. Sci. Pollut. Res. 2022, 29, 76944–76960. [Google Scholar] [CrossRef]
- Haro, K.; Ouarma, I.; Nana, B.; Bere, A.; Tubreoumya, G.C.; Kam, S.Z.; Laville, P.; Loubet, B.; Koulidiati, J. Assessment of CH4 and CO2 surface emissions from Polesgo’s landfill (Ouagadougou, Burkina Faso) based on static chamber method. Adv. Clim. Change Res. 2019, 10, 181–191. [Google Scholar] [CrossRef]
- Yilmaz, M.; Tinjum, J.M.; Acker, C.; Marten, B. Transport mechanisms and emission of landfill gas through various cover soil configurations in an MSW landfill using a static flux chamber technique. J. Environ. Manag. 2021, 280, 111677. [Google Scholar] [CrossRef] [PubMed]
- Giovenali, E.; Coppo, L.; Virgili, G.; Continanza, D.; Minardi, I.; Raco, B. The flux-meter: Implementation of a portable integrated instrumentation for the measurement of CO2 and CH4 diffuse flux from landfill soil cover. In Proceedings of the Fourteenth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 30 September–4 October 2013; Volume 30. [Google Scholar]
- Zhan, L.T.; Wu, T.; Feng, S.; Lan, J.W.; Chen, Y.M. A simple and rapid in situ method for measuring landfill gas emissions and methane oxidation rates in landfill covers. Waste Manag. Res. 2020, 38, 588–593. [Google Scholar] [CrossRef]
- Bakkaloglu, S.; Lowry, D.; Fisher, R.E.; France, J.L.; Nisbet, E.G. Carbon isotopic characterisation and oxidation of UK landfill methane emissions by atmospheric measurements. Waste Manag. 2021, 132, 162–175. [Google Scholar] [CrossRef]
- He, H.; Gao, S.; Hu, J.; Zhang, T.; Wu, T.; Qiu, Z.; Zhang, C.; Sun, Y.; He, S. In-situ testing of methane emissions from landfills using laser absorption spectroscopy. Appl. Sci. 2021, 11, 2117. [Google Scholar] [CrossRef]
- Aldhafeeri, T.; Tran, M.K.; Vrolyk, R.; Pope, M.; Fowler, M. A review of methane gas detection sensors: Recent developments and future perspectives. Inventions 2020, 5, 28. [Google Scholar] [CrossRef]
- Park, J.K.; Kang, J.Y.; Lee, N.H. Estimation of methane emission flux at landfill surface using laser methane detector: Influence of gauge pressure. Waste Manag. Res. 2016, 34, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, N.; Furichi, T.; Ishii, K.; Matsuo, K.; Iseki, T. Development of a convenient method for monitoring of methane in ambient air at landfill sites using a portable open path analyzer, APLAS 2004. In Proceedings of the Third Asia-Pacific Landfill Symposium, Kitakyushu, Japan, 18–20 October 2004; pp. 27–29. [Google Scholar]
- Abushammala, M.F.; Basri, N.E.A.; Younes, M.K. Seasonal variation of landfill methane and carbon dioxide emissions in a tropical climate. Int. J. Environ. Sci. Dev. 2016, 7, 586. [Google Scholar] [CrossRef]
- Lando, A.T.; Nakayama, H.; Shimaoka, T. Application of portable gas detector in point and scanning method to estimate spatial distribution of methane emission in landfill. Waste Manag. 2017, 59, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.T.; Qiu, Q.W.; Xu, W.J.; Chen, Y.M. Field measurement of gas permeability of compacted loess used as an earthen final cover for a municipal solid waste landfill. J. Zhejiang Univ. -Sci. A 2016, 7, 541–552. [Google Scholar] [CrossRef]
- Li, G.; Zhan, L.; Zhang, S.; Feng, S.; Zhang, Z. A dual-porosity model for coupled rainwater and landfill gas transport through capillary barrier covers. Comput. Geotech. 2022, 151, 104966. [Google Scholar] [CrossRef]
- Zhan, L.T.; Wu, T.; Feng, S.; Li, G.Y.; He, H.J.; Lan, J.W.; Chen, Y.M. Full-scale experimental study of methane emission in a loess-gravel capillary barrier cover under different seasons. Waste Manag. 2020, 107, 54–65. [Google Scholar] [CrossRef]
- Wu, T.; Zhan, L.T. Influence of atmospheric pressure on methane emissions from earthen landfill covers. In Proceedings of the 8th International Congress on Environmental Geotechnics Volume 2: Towards a Sustainable Geoenvironment, Hangzhou, China, 28 October–1 November 2018; Springer: Singapore, 2019; pp. 85–92. [Google Scholar]
- Xu, L.; Lin, X.; Amen, J.; Welding, K.; McDermitt, D. Impact of changes in barometric pressure on landfill methane emission. Glob. Biogeochem. Cycles 2014, 28, 679–695. [Google Scholar] [CrossRef]
- Bian, R.; Xin, D.; Chai, X. Methane emissions from landfill: Influence of vegetation and weather conditions. Environ. Technol. 2019, 40, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhan, L.; Feng, S.; Chen, P. Numerical analysis of moisture and gas transport in earthen final covers considering effects of vapor and temperature gradient. Soils Found. 2023, 63, 101262. [Google Scholar] [CrossRef]
- Ishigaki, T.; Yamada, M.; Nagamori, M.; Ono, Y.; Inoue, Y. Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environ. Geol. 2005, 48, 845–853. [Google Scholar] [CrossRef]
- Wang, Q.; Zuo, X.; Xia, M.; Xie, H.; He, F.; Shen, S.; Bouazza, A.; Zhu, L. Field investigation of temporal variation of volatile organic compounds at a landfill in Hangzhou, China. Environ. Sci. Pollut. Res. 2019, 26, 18162–18180. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wu, T.; Xu, H.; Lu, Y.; Qiu, Z.; Wang, X.; Zhang, P. Investigation on the emission and diffusion of hydrogen sulfide during landfill operations: A case study in Shenzhen. Sustainability 2021, 13, 2886. [Google Scholar] [CrossRef]
- Delkash, M.; Zhou, B.; Han, B.; Chow, F.K.; Rella, C.W.; Imhoff, P.T. Short-term landfill methane emissions dependency on wind. Waste Manag. 2016, 55, 288–298. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Cheng, J.; Wang, S.; He, H.; Chen, G.; Xu, H.; Wu, S. Hotspot Detection and Estimation of Methane Emissions from Landfill Final Cover. Atmosphere 2023, 14, 1598. https://doi.org/10.3390/atmos14111598
Wu T, Cheng J, Wang S, He H, Chen G, Xu H, Wu S. Hotspot Detection and Estimation of Methane Emissions from Landfill Final Cover. Atmosphere. 2023; 14(11):1598. https://doi.org/10.3390/atmos14111598
Chicago/Turabian StyleWu, Tao, Jiankang Cheng, Shifang Wang, Haijie He, Guannian Chen, Haoqing Xu, and Silin Wu. 2023. "Hotspot Detection and Estimation of Methane Emissions from Landfill Final Cover" Atmosphere 14, no. 11: 1598. https://doi.org/10.3390/atmos14111598
APA StyleWu, T., Cheng, J., Wang, S., He, H., Chen, G., Xu, H., & Wu, S. (2023). Hotspot Detection and Estimation of Methane Emissions from Landfill Final Cover. Atmosphere, 14(11), 1598. https://doi.org/10.3390/atmos14111598