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Abstract: The main objectives of this study were to identify methane hotspots through spatial distri-
bution tests of the surface methane concentration above a landfill final cover and to investigate the
effects of rainfall, atmospheric pressure, ground temperature, and ambient methane concentration on
methane emissions. A portable laser methane detector was used to measure the spatial distribution of
methane concentrations. The methane concentration distribution showed a distinct spatial variability.
The maximum methane concentration reached 3225 ppm, while 73.0% of the methane concentration
values were below 10.0 ppm. Several meteorological factors were found to be associated with the
variation in methane emissions. Rainfall limited gas transport in the cover, resulting in more signifi-
cant methane hotspots. Atmospheric pressure was negatively correlated with methane emission. The
ambient methane concentration and methane flux had a significant positive linear correlation. Based
on a linear correlation equation, the spatial distribution of methane concentrations in the landfill
could be converted into a methane emission distribution. The estimated average value for methane
emissions in the test area was approximately 4.3 g m−2 d−1. This study provides an experimental
basis for locating methane hotspots and assessing methane emissions in landfill final covers, and
proposes supplementary means for detecting geomembrane damage in landfill covers.

Keywords: methane emission; landfill cover; geomembrane; laser methane detector

1. Introduction

As an economically effective waste disposal method, landfilling is one of the main
municipal solid waste treatment methods adopted by most developing countries [1]. The
degradable substances in the waste are gradually degraded and landfill gas is continuously
released for decades [2]. Methane is one of the main components of landfill gas, accounting
for about 40–60% of its volume [3,4]. Correspondingly, municipal solid waste landfill is
one of the most important anthropogenic sources of methane emissions [5,6]. Methane has
27.2–29.8 times more global warming potential than carbon dioxide (based on a 100-year
time horizon), so fugitive methane emissions have an important impact on environmental,
economic, and political issues such as climate warming and the global economy [7,8].
Therefore, to suppress the adverse effects of greenhouse gases, it is necessary to effectively
reduce the fugitive emissions of landfill gas that have been generated in landfills [9].
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Landfill final cover is a containment technology for the disposal of municipal solid
waste that can effectively reduce the fugitive emissions of landfill gas and improve the
resource utilization of landfill gas [10]. The final cover system generally consists of four
components, including the surface layer, protection layer (geomembrane, GM), barrier layer,
and foundation layer. The heterogeneity of the cover system can lead to significant spatial
variability in landfill gas emissions [9]. The permeability coefficient of GMs should be less
than 1 × 10−14 m/s, with a diffusion coefficient of approximately 1 × 10−13 m2/s. GMs in
final cover systems are effective in preventing fugitive emissions of landfill gas. However,
the GM in the final cover may be damaged by factors such as incorrect installation or the
uneven settlement of landfill waste, resulting in significant landfill gas emissions through
holes in the GM [11]. Bouazza et al. [12] studied the gas leakage rate through a geosynthetic
clay liner–GM composite liner due to a circular defect in the GM, and found that the gas
permeability coefficient could be higher than 1.5 × 10−8 m/s. Therefore, if the GM in a
landfill final cover is damaged, it must be repaired to prevent environmental pollution.
The determination of the location of GM damage has always been a challenge. Electrical
leak location methods can accurately screen the location of GM damage, thus becoming
one of the most commonly used GM damage detection methods [13]. Gilson [14] pointed
out that if the GM used in a final cover is damaged during service, the location of the
damage can usually only be detected using electrical leak location methods. Nevertheless,
landfills typically cover a large area, which makes it time consuming, labor-intensive, and
uneconomical to apply electrical leak location methods to detect GM damage. It is important
to develop a detection method that can quickly determine the roughly damaged areas of
the GM in landfill covers, so as to reduce the cost and improve the timeliness by greatly
reducing the GM damage detection area required by the electrical leak location method.

The continuous degradation of landfilled organics leads to the generation of landfill
gas, which exists at a significantly higher gas pressure than atmospheric pressure [15].
The high landfill gas pressure makes the damaged area of the GM a potential hotspot for
landfill gas emissions [16,17]. Therefore, determining the location of methane emission
hotspots in the final cover can indirectly obtain the approximate location of the damage
area of the GM, achieving the purpose of reducing the damage detection area of the GM.
The static chamber method is one of the most commonly used techniques for measuring
methane emissions from landfill final covers [18,19]. However, due to the inconvenience
and time-consuming nature of this method, it cannot meet the needs of large-area field
testing. In order to quickly measure the distribution of the methane concentration in a
large area, laser absorption spectroscopy has attracted the interest of many scholars [20–22].
He et al. [23] proposed a highly effective method to measure methane concentrations in
landfill sites based on tunable diode laser absorption spectroscopy (TDLAS), and the field
results indicated that the TDLAS method was suitable for detecting methane emissions
from landfills on a large scale. Aldhafeeri et al. [24] pointed out that optical sensors based
on laser absorption spectroscopy technology have the advantages of fast testing, a low cost
and strong immunity to electromagnetic interference. Zhan et al. [21] used a portable laser
methane detector to measure the methane emissions from a landfill cover, and the results of
indoor verification tests and field tests proved that this method was fast, simple, accurate
and reliable.

The detection of GM damage in the landfill final cover is a challenging problem,
as traditional electrical leak location methods are uneconomical and time-consuming
when applied to large sites. The main objective of the present study was to develop
a methane hotspot localization method suitable for large-scale landfill sites based on
laser absorption spectroscopy technology. Thus, the potential GM damage areas can be
determined according to the location of methane hotspots, reducing the GM damage
detection area required by electrical leak location methods. In addition, the effects of
rainfall, atmospheric pressure, and ground temperature on methane emissions were studied.
The relationship between ambient methane concentrations and methane emissions was
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analyzed to achieve a rough estimation of the methane emissions generated by the studied
landfill site.

2. Materials and Methods
2.1. Field Study Site

The field study area is located in the Phase II landfill area of the Honghualing munici-
pal solid waste landfill in Shenzhen, China (22◦46′18′′ N, 114◦16′9′′ E). The Phase II landfill
area of the Honghualing municipal solid waste landfill was put into use in August 2013. It
covers an area of 72,000 m2 and has a design storage capacity of 1.08 million m3. The Phase
II landfill area of the landfill reached the design level and ceased to be landfilled in May
2016, and the closure works were completed in September 2017. The final cover system of
the Honghualing municipal solid waste landfill adopted a composite cover, which mainly
consisted of a high density polyethylene (HDPE) GM and compacted clay liner. The uneven
settlement of the waste area led to cracks in the cover soil and damage to the GM. The
Phase II landfill area of the Honghualing municipal solid waste landfill is shown in Figure 1.
The western area (37,500 m2) is planned to be recovered, while the eastern area marked by
the red dotted line (34,500 m2) will be evaluated for GM damage and repaired.
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Figure 1. The Phase II landfill area of the Honghualing municipal solid waste landfill.

2.2. Methane Concentration Distribution Test

Figure 2 shows the distribution of monitoring points at the landfill site. The methane
concentration tests above the landfill surface were conducted on a sampling grid of
15 m × 15 m. The spacing between the monitoring points was flexibly adjusted according
to the terrain. A total of 171 monitoring points were arranged throughout the test area.
In order to quickly and accurately locate each monitoring point, a portable GPS (Tirmble
R8 GNSS; Trimble Navigation Ltd., Sunnyvale, CA, USA) was used to locate the moni-
toring points. The horizontal positioning accuracy and vertical positioning accuracy of
this portable GPS in static measurement mode are 3 mm and 3.5 mm, respectively. The
surface methane concentration measurements in the test area were conducted between
12 August and 28 August 2020. Rainfall occurred during the test period, and the methane
concentrations were measured on sunny days and after rainfall.
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Figure 2. Distribution of monitoring points for surface methane concentration in the test area.

The surface methane concentrations at the landfill site were determined using a
portable laser methane detector (TGE-SA3C32A; measurement range of 1–50,000 ppm·m,
measurement accuracy of±10%). The effective detection range of the laser methane detector
is 0.5–30 m. The laser methane detector device is based on infrared absorption spectroscopy,
uses a semiconductor laser as a collimated excitation source, and employs the second
harmonic detection of wavelength modulation spectroscopy to establish the methane
concentration [25]. Tanikawa et al. [26] reported that the methane concentration measured
with the laser methane detector was approximately equivalent to that measured with a
FID (flame ionization detector). The laser methane detector is sensitive to small changes in
methane concentration and can quickly obtain detectable concentration differences [21].
The schematic diagram of measuring the surface methane concentration using the portable
laser methane detector is shown in Figure 3. The methane concentration can be calculated
according to the following equation:

Cm =
M
L

(1)

where Cm is the methane concentration (ppm); M is the path-integrated methane concentra-
tion (ppm·m); and L is the path length (m).
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2.3. Methane Emission Test

The static chamber method is one of the most commonly used methods for measuring
landfill gas emissions [27]. However, the traditional static chamber method requires gas
samples to be collected in the chamber and then transported to the laboratory for the gas
components test, making it unsuitable for this study. Zhan et al. [21] proposed a newly
developed static-chamber method with a laser methane detector to measure the methane
emissions from landfill covers; this was adopted in this study because of its fast and
accurate measurements.

A square static chamber was used to measure the methane emissions. The chamber was
made of transparent plexiglass with a wall thickness of 5 mm. The length and height of the
static chamber were both 50 cm, falling within the effective test range of the laser methane
detector. Soil was filled to the interface between the static chamber and the ground, and
the static chamber was sealed by wetting the soil. A thermometer (MDG437, Guangzhou
Anymetre Instruments Co., Ltd. (Guangzhou, China); accuracy of ± 1.0 ◦C) was placed in
the static chamber to measure the gas temperature. An absolute barometer (HHP360-A,
OMEGA Engineering Inc., Norwalk, CT, USA; for measuring absolute gas pressure with
resolution of 10 Pa) was used to test the gas pressure inside the chamber. A reflector was
attached to the inner wall of one side of the chamber. The methane concentration in the
static chamber was measured using the portable laser methane detector on the outer wall
of the other side of the chamber. The initial concentration of methane measured in the static
chamber was the ambient methane concentration. After completing the methane emissions
test, the ground temperature within 10 cm below the surface of the monitoring point was
measured using the thermal resistance thermometer Ondotori TR-62 (Shiro Industry Co.,
Osaka, Japan; accuracy of ± 0.25 ◦C).

The methane emissions can be calculated using the following equation [21]:

Jm =
PMmV

ART

(
∆C
∆t

)
(2)

where Jm is the methane emission flux (g m−2 d−1); P is the absolute atmospheric pressure
inside the static chamber (Pa); Mm is the molar mass of methane (16 g mol−1); V is the
volume of the static chamber (m3); A is the internal cross-sectional area of the static chamber
(m2); R is the gas constant (8.314 J K−1 mol−1); T is the chamber temperature (K); and
∆C/∆t is the slope of methane concentration versus time curve (m3 CH4 m−3 d−1).

3. Results and Discussion
3.1. Locations of Methane Hotspots

The spatial distributions of methane concentrations in this study were determined
using Surfer 11 (Golden Software, Inc., Golden, CO, USA). The Kriging method was
used as the interpolation method. In the Kriging method, a model of the overall spatial
measured variance structure is used to generate the interpolated contours [16]. Based on
the methane concentration values measured at the 171 monitoring points in the landfill test
area, Figure 4 shows the typical spatial distribution of methane concentrations in the test
area measured on sunny days. The values of the horizontal and vertical axes in the figure
are the plane coordinate values of the landfill test area, and the bar on the right side of the
figure indicates the ambient methane concentration in part per million (ppm). According
to the results, the surface methane concentrations measured at the 171 monitoring points in
the test area ranged from 1.7 to 3225.3 ppm, with a variation range of about four orders
of magnitude. It was observed that approximately 73.0% of the methane concentration
values measured at the monitoring points were lower than 10 ppm. The measured results
showed that the methane concentration distribution on the surface of the landfill final
cover was characterized by high spatial variability. This is consistent with the field test
results of Lando et al. [28], who pointed out that the ambient methane concentration can
even vary significantly on centimeter scales. The high spatial variability in the methane
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concentration distribution might be related to the heterogeneity of the landfill cover. The
uneven settlement of landfill waste and changes in meteorological conditions could lead
to the heterogeneity of the cover soil, which in turn could cause significant changes in
the gas conductivity of the landfill cover at different locations [29]. As a consequence, the
distribution of the surface methane concentration would be changed.
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As can be seen from Figure 4, there are three methane hotspots in the test area, which
are highlighted by the letters a–c. The methane concentration values measured at the
monitoring points near methane hotspots were significantly higher, which was consistent
with the field test results of Shen et al. [16]. Moreover, the influence range of methane
hotspots was positively correlated with the measured maximum methane concentration
value. In a landfill with a final cover system containing a HDPE GM and gas collection
system, the surface methane concentrations should typically be close to 0 ppm due to the
low permeability of the GM [12]. The presence of these three methane hotspots in the
test area suggested that there was a high probability of GM holes in the three regions of
a–c in the figure. The potential damage areas of the GM could be preliminarily identified
according to the locations of methane hotspots. Then, the electrical leak location methods
could be used to confirm the locations of GM damage near the three methane hotspots.

3.2. Effects of Rainfall on Methane Concentration Distribution

Methane emissions from the landfill final cover are not only related to the structural
design of the cover system, but are also affected by meteorological factors [16]. Rainfall can
significantly change the distribution of soil moisture content in the landfill cover, making
it an important meteorological condition affecting landfill gas emissions from the landfill
cover [30]. Figure 5 shows the spatial distribution of methane concentrations in the test area
measured after rainfall. Under the influence of rainfall, the surface methane concentrations
measured at the 171 monitoring points in the test area ranged from 2.8 to 5428.6 ppm.
Approximately 75.9% of the methane concentration values measured at the monitoring
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points were lower than 10.0 ppm. Compared to the methane concentration distribution
measured on the sunny days (see Figure 4), the patterns of methane concentration distri-
bution in the test area before and after rainfall were consistent. However, the maximum
surface methane concentration measured at the monitoring points increased by 68.3% due
to the effect of rainfall. The results suggested that rainfall might cause methane emissions
from the final cover to be more concentrated in methane hotspots. Rainfall infiltration
increased the moisture content of the cover soil and encroached on the pores occupied by
gases. Thus, the gas conductivity of the final cover decreased when encountering rainfall,
which in turn led to more pronounced methane hotspots [31]. Therefore, the impact of
rainfall should be considered when assessing the long-term variation in methane emissions
from landfill covers.
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3.3. Effects of Atmospheric Pressure on Methane Emission

Based on the results of the static-chamber tests of methane emissions at the monitoring
points, the relationship between atmospheric pressure and the methane emissions from
landfill cover is shown in Figure 6. The atmospheric pressure during the test period ranged
from 93,610 to 94,406 Pa, while methane emissions varied from 0 to 303.3 g m−2 d−1.
Overall, there was no significant linear relationship between the on-site measured methane
emissions and atmospheric pressure, but the corresponding maximum methane emissions
at different atmospheric pressures were negatively correlated with atmospheric pressure.
The results were consistent with those relating to the influence of atmospheric pressure
on methane emissions obtained by Wu et al. [32] and Xu et al. [33] in field experiments.
When the soil moisture content in the landfill cover and the gas pressure inside the landfill
remained stable, changes in the atmospheric pressure altered the gas pressure difference
between the top and bottom of the final cover. Changes in the gas pressure distribution in
the final cover could, in turn, change the emission of methane gas. Park et al. [25] studied
the effects of atmospheric pressure on landfill gas emissions through field experiments,
and calculated the methane emissions with linear regression models and atmospheric
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pressure data. In this study, due to the isolation of the connection between the atmosphere
and landfill gas by the GM in most of the testing area, methane emissions measured only
in the potential GM damage area (i.e., methane hotspots) showed a significant negative
correlation with atmospheric pressure. In covers with GMs, it is unsuitable to estimate
methane emissions using atmospheric pressure.
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3.4. Influence of Ground Temperature

The ground temperature of the final cover in municipal solid waste landfills may
be influenced by climatic conditions, such as humidity, wind, and solar radiation, in
addition to the heat conductivity of the landfilled waste and thermal transfer from landfill
gas [34]. Furthermore, heat generated by methane-oxidizing microorganisms can also
play a role in determining the surface temperature of the cover layer [35]. Figure 7 shows
the relationship between the measured methane emissions and ground temperature at
the monitoring points. There was no clear correlation between the methane emissions
and ground temperature measured at each monitoring point. However, the experimental
study conducted by Ishigaki et al. [36] revealed a significant positive correlation between
methane emissions and the ground temperature, and they estimated methane emissions
using exponential regression models and ground temperature data. The migration of
landfill gas and microbial methane oxidation contributed to an increase in the ground
temperature [31].

The discrepancy between the results of this study and those reported by Ishigaki et al. [36]
may be attributed to two possible factors. On the one hand, most areas of the test site
maintained with GMs were in good condition, which effectively prevented the landfill gas
from entering the cover. As a result, the thermal transfer of landfill gas and the heat generated
by methane oxidation microorganisms in these areas were weak, resulting in a relatively small
impact on the ground temperature. The results indicated that GM played an important barrier
role in the final cover of the landfill, effectively controlling the release of landfill gas and
reducing its impact on the environment [37]. On the other hand, the methane emission test
at each monitoring point of the landfill took a long time [21]. Thus, different environmental
conditions and the soil conditions of the landfill cover during the test led to the poor regularity
of the test results.
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3.5. Relationship between Ambient Methane Concentration and Methane Emission

Figure 8 shows the relationship between the measured ambient methane concen-
trations and methane emissions. The data were analyzed using a linear function, and
the correlation coefficient (R2) was 0.5228. The results indicated a strong positive lin-
ear relationship between the measured surface methane emissions and ambient methane
concentrations in the test area, which was consistent with the results of Park et al. [25].
Lando et al. [28] reported that the distribution of methane emissions from landfill could be
assessed based on the distribution of ambient methane concentrations. According to the
data in Figure 8, there was a significant fluctuation in the measured methane emissions cor-
responding to the same ambient methane concentration. This fluctuation might be related
to the gas transport caused by wind, which could lead to variations in methane emission. As
wind speed increases, the gas transport speed also increases, leading to a change in methane
emissions [38,39]. In addition, environmental factors such as temperature and humidity
may also have an impact on methane emissions. He et al. [38] pointed out that wind-
induced gas transport can significantly affect the migration and diffusion of landfill gas.
Despite the fluctuations in methane emissions measured at the monitoring points, strong
correlations between the methane emissions and ambient methane concentrations enable
the conversion of ambient methane concentrations into surface methane fluxes [25,28]. This
conversion is important for assessing the approximate methane emissions from landfills.

A portable laser methane detector can be used to conduct extensive tests on surface
methane concentrations in a short period of time, thereby quickly and accurately obtaining
the methane concentration distribution of a large landfill [16]. This method helps to deter-
mine the location of methane hotspots and provides a basis for the subsequent arrangement
of more representative methane emission monitoring locations. Based on the distribution
of methane concentrations in the landfill (as shown in Figure 4) and the fitted relationship
between methane emissions and ambient methane concentrations (y = 0.1897x− 8.4042),
the maximum value of the estimated methane emission rate can be up to 603.4 g m−2 d−1,
while the average methane emission rate of the test area is approximately 4.3 g m−2 d−1.
Lando et al. [28] studied methane emissions from exposed working areas and reported that
the methane emissions ranged between 0.03 and 155 g m−2 d−1, and that the average value
of the estimated methane flux was 38.3 g m−2 d−1. The measured maximum methane
emission rate was significantly higher than the result of Lando et al. [28], while the average
methane emissions was much lower. This may be due to the difficulty of landfill gas
breaking through the blockade of the GM and mainly discharging from GM holes.
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4. Conclusions

In this study, a portable methane detector was used to measure the distribution of
surface methane concentrations above the landfill final cover, and the methane emissions
at each monitoring point were measured in combination with a static chamber. In addi-
tion, the effects of rainfall, atmospheric pressure, ground temperature, and the ambient
methane concentration on the methane emissions from the final cover were analyzed. This
study provides an important reference for landfill gas emission control and environmental
protection in landfills.

Due to the influence of multiple factors (such as rainfall, atmospheric pressure, and
soil heterogeneity) on the methane emissions from the landfill final cover, the distribution
of methane concentrations in the test area showed significant spatial variability, and that
the methane concentrations could vary by up to four orders of magnitude. At most
of the methane concentration monitoring points (about 73%), the measured methane
concentrations were low (<10 ppm). Methane hotspots can roughly indicate the potential
areas of GM damage, significantly reducing the GM damage detection area required for
subsequent repair.

Meteorological factors could change the methane concentration distribution and emis-
sions in the landfill final cover. Rainfall limited the movement of gases in the final cover,
making methane hotspots more pronounced. There was a negative correlation between
atmospheric pressure and methane emissions near methane hotspots. Due to the isolation
effect of GMs, there was no significant correlation between the ground temperature and
methane emissions. Moreover, there was a significant positive linear relationship between
the ambient methane concentration and methane emissions. Based on the on-site methane
concentration distribution, methane emissions could be estimated using the correlation
equation between the ambient methane concentration and methane emissions. The methane
concentration test with the laser methane detector is beneficial when aiming to reduce
the time and cost of GM damage detection in landfill final covers and can quickly assess
methane emissions.
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