Validation of MERRA-2 AOT Modeling Data over China Using SIAVNET Measurement
Abstract
:1. Introduction
2. Data and Methodology
2.1. MERRA-2 AOT Data
2.2. SIAVNET
2.2.1. Sites Distribution
2.2.2. Data Quality
2.3. MERRA-2 AOT Modeling Data Validation Method
2.3.1. Box Plot
2.3.2. Density Scatter Plot
2.3.3. Time Series Comparison
3. Results and Discussion
3.1. General Validation Using All SIAVNET Sites
3.2. Validation for Different Sites
3.2.1. Validation for Low Altitude Sites
3.2.2. Validation for High Altitude Sites
3.3. Validation for Different Seasons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 2015, 28, 4794–4819. [Google Scholar] [CrossRef]
- Forkel, R.; Balzarini, A.; Baró, R.; Bianconi, R.; Curci, G.; Jiménez-Guerrero, P.; Hirtl, M.; Honzak, L.; Lorenz, C.; Im, U.; et al. Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions. Atmos. Environ. 2015, 115, 630–645. [Google Scholar] [CrossRef]
- Wang, F.; Guo, J.; Zhang, J.; Huang, J.; Min, M.; Chen, T.; Liu, H.; Deng, M.; Li, X. Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China. Atmos. Environ. 2015, 113, 1–9. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Di, Q.; Kloog, I.; Koutrakis, P.; Lyapustin, A.; Wang, Y.; Schwartz, J. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Technol. 2016, 50, 4712–4721. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Ran, Q.; Lee, S.-Y.; Zheng, D.; Chen, H.; Yang, S.; Moore, J.C.; Dong, W. Potential health and economic impacts of shifting manufacturing from China to Indonesia or India. Sci. Total Environ. 2023, 855, 158634. [Google Scholar] [CrossRef]
- Sun, E.; Fu, C.; Yu, W.; Xie, Y.; Lu, Y.; Lu, C. Variation and Driving Factor of Aerosol Optical Depth over the South China Sea from 1980 to 2020. Atmosphere 2022, 13, 372. [Google Scholar] [CrossRef]
- Xian, P.; Zhang, J.; O’Neill, N.T.; Toth, T.D.; Sorenson, B.; Colarco, P.R.; Kipling, Z.; Hyer, E.J.; Campbell, J.R.; Reid, J.S.; et al. Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses—Part 1: Climatology and trend. Atmos. Chem. Phys. 2022, 22, 9915–9947. [Google Scholar] [CrossRef]
- Koster, R.D.; Bosilovich, M.G.; Akella, S.; Lawrence, C.; Cullather, R.; Draper, C.; Gelaro, R.; Kovach, R.; Liu, Q.; Molod, A.; et al. Technical Report Series on Global Modeling and Data Assimilation; NASA: Washington, DC, USA, 2015; Volume 43. [Google Scholar]
- Suarez, M.J.; da Silva, A.; Dee, D.; Bloom, S.; Bosilovich, M.; Pawson, S.; Schubert, S.; Wu, M.; Sienkiewicz, M.; Stajner, I. Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4; NASA: Washington, DC, USA, 2005. [Google Scholar]
- Reichle, R.H.; Draper, C.S.; Liu, Q.; Girotto, M.; Mahanama, S.P.P.; Koster, R.D.; De Lannoy, G.J. Assessment of MERRA-2 Land Surface Hydrology Estimates. J. Clim. 2017, 30, 2937–2960. [Google Scholar] [CrossRef]
- Che, Y.; Yu, B.; Parsons, K.; Desha, C.; Ramezani, M. Evaluation and comparison of MERRA-2 AOD and DAOD with MODIS DeepBlue and AERONET data in Australia. Atmos. Environ. 2022, 277, 119054. [Google Scholar] [CrossRef]
- Song, Z.; Fu, D.; Zhang, X.; Wu, Y.; Xia, X.; He, J.; Han, X.; Zhang, R.; Che, H. Diurnal and seasonal variability of PM2.5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements. Atmos. Environ. 2018, 191, 70–78. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Mukkavilli, S.K.; Prasad, A.A.; Taylor, R.A.; Huang, J.; Mitchell, R.M.; Troccoli, A.; Kay, M.J. Assessment of atmospheric aerosols from two reanalysis products over Australia. Atmos. Res. 2019, 215, 149–164. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, Z.; Zhan, X.; Ma, H.; Tian, X. Evaluation of MODIS and two reanalysis aerosol optical depth products over AERONET sites. Atmos. Res. 2019, 220, 75–80. [Google Scholar] [CrossRef]
- Cheng, T.; Zhu, H.; Gu, X.; Shi, S.; Zhou, X.; Yang, J. National Civil Space Infrastructure Satellite Aerosol Product Validation Network (SIAVNET) measurements: Supporting satellite aerosol product validation for different surface types over China. Atmos. Res. 2023, 282, 106508. [Google Scholar] [CrossRef]
- Su, Y.; Xie, Y.; Tao, Z.; Hu, Q.; Yu, T.; Gu, X. Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China. Atmos. Environ. 2021, 247, 118205. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Li, Z.; Blarel, L.; Podvin, T.; Goloub, P.; Buis, J.-P.; Morel, J.-P. Transferring the calibration of direct solar irradiance to diffuse-sky radiance measurements for CIMEL Sun-sky radiometers. Appl. Opt. 2008, 47, 1368–1377. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Barreto, Á.; Cuevas, E.; Granados-Muñoz, M.J.; Alados-Arboledas, L.; Romero, P.M.; Gröbner, J.; Kouremeti, N.; Almansa, A.F.; Stone, T.; Toledano, C.; et al. The new sun-sky-lunar Cimel CE318-T multiband photometer—A comprehensive performance evaluation. Atmos. Meas. Tech. 2016, 9, 631–654. [Google Scholar] [CrossRef]
- Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef]
- Zemp, M.; Chao, Q.; Dolman, A.J.H.; Herold, M.; Krug, T.; Speich, S.; Yu, W. GCOS 2022 Implementation Plan. Glob. Clim. Obs. Syst. GCOS 2022, 85. [Google Scholar]
Site Name | Latitude | Longitude | Altitude (m) | Climate/Surface Type |
---|---|---|---|---|
Dongtinghu | 29.355 | 113.132 | 100 | Lakeshore |
Jiangshanjiao | 43.853 | 128.952 | 450 | Forest |
Jingyuetan | 43.998 | 125.402 | 213 | Cropland |
Luancheng | 37.892 | 114.689 | 27 | Cropland |
Nanjing | 31.504 | 119.211 | 50 | Cropland |
Qingdao | 35.937 | 120.170 | 41 | Seashore |
Qiyang | 26.759 | 111.871 | 100 | Shrub |
Yucheng | 36.831 | 116.570 | 7 | Cropland |
Site Name | AOD ≤ | Linear Fit | N | R2 | RMSE | Within GCOS |
---|---|---|---|---|---|---|
Dongtinghu | 2.5 | y = 0.750x + 0.089 | 320 | 0.633 | 0.136 | 60.94% |
1.0 | y = 0.803x + 0.071 | 310 | 0.646 | 0.117 | 62.26% | |
0.5 | y = 0.901x + 0.043 | 221 | 0.483 | 0.095 | 62.90% | |
Jiangshanjiao | 2.5 | y = 0.502x + 0.058 | 389 | 0.457 | 0.110 | 47.81% |
1.0 | y = 0.567x + 0.043 | 382 | 0.435 | 0.102 | 48.43% | |
0.5 | y = 0.728x + 0.010 | 353 | 0.472 | 0.078 | 50.99% | |
Jingyuetan | 2.5 | y = 0.471x + 0.077 | 1058 | 0.504 | 0.104 | 60.21% |
1.0 | y = 0.600x + 0.050 | 1040 | 0.531 | 0.094 | 61.15% | |
0.5 | y = 0.723x + 0.029 | 964 | 0.451 | 0.083 | 64.32% | |
Luancheng | 2.5 | y = 0.532x + 0.091 | 334 | 0.628 | 0.150 | 48.50% |
1.0 | y = 0.783x + 0.013 | 311 | 0.695 | 0.103 | 50.80% | |
0.5 | y = 0.784x + 0.014 | 253 | 0.480 | 0.091 | 54.15% | |
Nanjing | 2.5 | y = 0.255x + 0.287 | 395 | 0.225 | 0.170 | 41.27% |
1.0 | y = 0.472x + 0.207 | 351 | 0.320 | 0.152 | 46.15% | |
0.5 | y = 0.853x + 0.097 | 244 | 0.413 | 0.114 | 49.59% | |
Qingdao | 2.5 | y = 0.674x + 0.098 | 806 | 0.639 | 0.145 | 52.48% |
1.0 | y = 0.815x + 0.057 | 771 | 0.654 | 0.128 | 54.47% | |
0.5 | y = 0.856x + 0.045 | 600 | 0.413 | 0.111 | 57.33% | |
Qiyang | 2.5 | y = 0.686x + 0.091 | 434 | 0.572 | 0.151 | 50.46% |
1.0 | y = 0.774x + 0.056 | 418 | 0.579 | 0.129 | 51.44% | |
0.5 | y = 0.774x + 0.061 | 292 | 0.398 | 0.099 | 54.45% | |
Yucheng | 2.5 | y = 0.456x + 0.155 | 412 | 0.418 | 0.159 | 45.15% |
1.0 | y = 0.674x + 0.074 | 389 | 0.487 | 0.137 | 47.81% | |
0.5 | y = 0.758x + 0.048 | 292 | 0.360 | 0.114 | 55.82% |
Site Name | Latitude | Longitude | Altitude (m) | Climate/Surface Type |
---|---|---|---|---|
Guyuan | 41.767 | 115.680 | 1075 | Grassland |
Haibei | 37.611 | 101.313 | 3158 | Grassland |
Hami | 42.084 | 94.921 | 1139 | Gobi Desert |
Minqin | 38.575 | 102.984 | 1329 | Gobi Desert |
Site Name | AOD ≤ | Linear Fit | N | R2 | RMSE | Within GCOS |
---|---|---|---|---|---|---|
Guyuan | 2.5 | y = 0.416x + 0.050 | 212 | 0.625 | 0.058 | 83.49% |
1.0 | y = 0.421x + 0.049 | 210 | 0.321 | 0.048 | 83.81% | |
0.5 | y = 0.488x + 0.041 | 209 | 0.361 | 0.047 | 84.21% | |
Haibei | 2.5 | y = 0.412x + 0.069 | 831 | 0.230 | 0.069 | 72.44% |
1.0 | y = 0.448x + 0.065 | 830 | 0.240 | 0.069 | 72.53% | |
0.5 | y = 0.565x + 0.051 | 823 | 0.296 | 0.066 | 73.15% | |
Hami | 2.5 | y = 0.683x + 0.099 | 302 | 0.538 | 0.103 | 57.95% |
1.0 | y = 0.888x + 0.068 | 299 | 0.612 | 0.093 | 58.53% | |
0.5 | y = 1.115x + 0.036 | 290 | 0.587 | 0.086 | 58.28% | |
Minqin | 2.5 | y = 0.307x + 0.144 | 1341 | 0.238 | 0.095 | 52.80% |
1.0 | y = 0.446x + 0.117 | 1332 | 0.306 | 0.090 | 53.15% | |
0.5 | y = 0.572x + 0.095 | 1272 | 0.276 | 0.080 | 54.80% |
Season | Average Angstrom Exponent |
---|---|
Spring | 0.97 |
Summer | 1.00 |
Autumn | 1.09 |
Winter | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Zhu, H.; Wang, X. Validation of MERRA-2 AOT Modeling Data over China Using SIAVNET Measurement. Atmosphere 2023, 14, 1592. https://doi.org/10.3390/atmos14101592
Shi S, Zhu H, Wang X. Validation of MERRA-2 AOT Modeling Data over China Using SIAVNET Measurement. Atmosphere. 2023; 14(10):1592. https://doi.org/10.3390/atmos14101592
Chicago/Turabian StyleShi, Shuaiyi, Hao Zhu, and Xing Wang. 2023. "Validation of MERRA-2 AOT Modeling Data over China Using SIAVNET Measurement" Atmosphere 14, no. 10: 1592. https://doi.org/10.3390/atmos14101592
APA StyleShi, S., Zhu, H., & Wang, X. (2023). Validation of MERRA-2 AOT Modeling Data over China Using SIAVNET Measurement. Atmosphere, 14(10), 1592. https://doi.org/10.3390/atmos14101592