Analysis of the Causes and Wind Field Structure of a Dry Microburst in a Weak Weather Background
Abstract
:1. Introduction
2. Study Area, Equipment, and Data
3. Weather and Terrain Factors Analysis for Dry Microburst
3.1. Weather Factors Analysis
3.2. Terrain Factors Analysis
- w is the vertical velocity.
- θ is the potential temperature.
- p is the pressure.
- c is the specific heat.
- r is the mixing ratio, defined as the sum of the mixing ratios of cloud water (), rainwater (), and ice water ().
- The first four terms represent the vertical gradients of perturbation pressure.
- The term involving thermal buoyancy () plays a crucial role.
- The term involving perturbation pressure buoyancy (p′) is important.
- The last term represents the contribution of condensates (cloud water, rainwater, and ice water).
- 5.
- It raises the temperature near the ground, leading to lower pressure and positive buoyancy in the heated air, resulting in an upward motion.
- 6.
- The vertical temperature structure in the atmosphere exhibits a condition where it is warmer aloft and cooler near the surface, creating negative buoyancy in the upper air and causing downdrafts.
4. Wind Field Structure and Characteristics of Downdrafts
4.1. Wind Field Time-Height Distribution and Characteristics
4.2. Near-Surface Wind Field Structure and Characteristics
4.3. Profile Wind Field Structure and Characteristics
4.4. Wind Field Changes in the Approach Path Area
5. Conclusions
- This dry microburst event occurred within a stable atmospheric background, with a relatively strong intensity that weakened as it moved toward the Yinchuan Airport. It passed over the airport with reduced intensity. During this event, the CAPE value was 0 J·kg−1, indicating atmospheric stability. However, the DCAPE value was 880 J·kg−1, signifying a substantial potential for descending airflow. This highlights the important role of DCAPE in forecasting dry microbursts.
- In most microburst events, thermodynamic forcing plays a decisive role. In this case, the dry microburst was triggered by the phenomenon of the foehn (burning wind) caused by the foehn effect as air flows crossed the Helan Mountains. This effect heated the surface near the airport, providing the necessary thermodynamic forcing for the microburst. The Yinchuan Airport is located on the leeward side of the Helan Mountains, where the foehn is common and can lead to thermal convection, strong surface winds, and wind shear, which can impact aviation safety. Further quantitative research on the impact of the foehn is needed in the future.
- The Doppler Wind Lidar effectively observed the wind field structure of this microburst event. Combining data from its DBS, PPI, RHI, and GP modes allowed for a clear representation of the spatial and temporal evolution of the microburst. The minimum vertical velocity reached −5.76 m·s−1, with the descending wind not reaching the ground, staying about 50 m above the surface. The wind field displayed a distinct symmetric structure, and, as the microburst’s core moved over the Yinchuan Airport, it generated low-level wind shear over the runway and airspace, posing a hazard to flight safety.
- This dry microburst event occurred in a relatively stable atmospheric environment, making it exceptionally rare and difficult to detect on conventional weather radar. Additionally, it occurred at night, making it more likely to go unnoticed. The use of the Doppler Wind Lidar provided clear observations of the event, emphasizing the Lidar’s effectiveness in monitoring such weather phenomena under weak weather conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujita, T.T. Spearhead Echo and Downburst near the Approach End of a John F. Kennedy Airport Runway, New York City; No. SMRP-RP-137; NASA: Washingotn, DC, USA, 1976.
- Fujita, T.T.; Byers, H.R. Spearhead echo and downburst in the crash of an airliner. Mon. Weather Rev. 1977, 105, 129–146. [Google Scholar] [CrossRef]
- Fujita, T.T. Downbursts and microbursts—An aviation hazard. In Proceedings of the Conference on Radar Meteorology, Miami Beach, FL, USA, 15–18 April 1980. [Google Scholar]
- Fujita, T. Microbursts as an aviation wind shear hazard. In Proceedings of the 19th Aerospace Sciences Meeting, St. Louis, MO, USA, 12–15 January 1981; p. 386. [Google Scholar]
- Wolfson, M.M.; Delanoy, R.L.; Forman, B.E.; Hallowell, R.G.; Pawlak, M.L.; Smith, P.D. Automated microburst wind-shear prediction. Linc. Lab. J. 1994, 7, 399–426. [Google Scholar]
- Fujita, T.T. Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci. 1981, 38, 1511–1534. [Google Scholar] [CrossRef]
- Wakimoto, R.M. Forecasting dry microburst activity over the high plains. Mon. Weather Rev. 1985, 113, 1131–1143. [Google Scholar] [CrossRef]
- McCarthy, J.; Norviel, V. Numerical and Flight Simulator Test of the Flight Deterioration Concept; Interim Report; NASA: Washington, DC, USA, 1982.
- Fujita, T. The Downburst, Microburst and Macroburst; SMRPResearch Paper 210; University of Chicago: Chicago, IL, USA, 1985; 122p. [Google Scholar]
- Proctor, F.H. Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci. 1988, 45, 3137–3160. [Google Scholar] [CrossRef]
- Brown, J.M.; Knupp, K.R.; Caracena, F. Destructive winds from shallow, high-based cumulonimbi. In Proceedings of the 12th Conference on Severe Local Storms, San Antonio, TX, USA, 11–15 January 1982; Volume 272275. [Google Scholar]
- Adachi, T.; Kusunoki, K.; Yoshida, S.; Arai, K.I.; Ushio, T. High-speed volumetric observation of a wet microburst using X-band phased array weather radar in Japan. Mon. Weather Rev. 2016, 144, 3749–3765. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W.; Williams, C.R. Physical origin of a wet microburst: Observations and theory. J. Atmos. Sci. 2004, 61, 1186–1195. [Google Scholar] [CrossRef]
- De Meutter, P.; Gerard, L.; Smet, G.; Hamid, K.; Hamdi, R.; Degrauwe, D.; Termonia, P. Predicting small-scale, short-lived downbursts: Case study with the NWP limited-area ALARO model for the Pukkelpop thunderstorm. Mon. Weather Rev. 2015, 143, 742–756. [Google Scholar] [CrossRef]
- Ohno, H.; Suzuki, O.; Nirasawa, H.; Yoshizaki, M.; Hasegawa, N.; Tanaka, Y.; Muramatsu, Y.; Ogura, Y. Okayama Downbursts on 27 June 1991 Downburst Identifications and Environmental Conditions. J. Meteorol. Soc. Jpn. Ser. II 1994, 72, 197–222. [Google Scholar] [CrossRef]
- Straka, J.M.; Anderson, J.R. Numerical simulations of microburst-producing storms: Some results from storms observed during COHMEX. J. Atmos. Sci. 1993, 50, 1329–1348. [Google Scholar] [CrossRef]
- Wakimoto, R.M. Convectively Driven High Wind Events. In Severe Convective Storms; American Meteorological Society: Boston, MA, USA, 2001; pp. 255–298. [Google Scholar]
- Srivastava, R.C. A simple model of evaporatively driven dowadraft: Application to microburst downdraft. J. Atmos. Sci. 1985, 42, 1004–1023. [Google Scholar] [CrossRef]
- Ozdemir, E.T.; Deniz, A.; Sezen, I.; Aslan, Z.; Yavuz, V. Investigation of thunderstorms over Ataturk International Airport (LTBA), Istanbul. Mausam 2017, 68, 175–180. [Google Scholar] [CrossRef]
- Tuncay, E.; Ali, D. Nowcasting of a thunderstorm: The case study of 2 February, 2015 at Istanbul Ataturk International Airport. Mausam 2020, 71, 21–32. [Google Scholar]
- Yavuz, V.; Deniz, A.; Özdemir, E.T.; Karan, H.; Temiz, C. Long-term thunderstorm analysis at airports in the Marmara Region: Types and favourable atmospheric conditions. Int. J. Glob. Warm. 2022, 28, 81–95. [Google Scholar] [CrossRef]
- Gensini, V.A.; Ashley, W.S. Climatology of potentially severe convective environments from the North American Regional Reanalysis. E-J. Sev. Storms Meteorol. 2011, 6, 1–40. [Google Scholar] [CrossRef]
- Smith, B.T.; Thompson, R.L.; Grams, J.S.; Broyles, C.; Brooks, H.E. Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Weather Forecast. 2012, 27, 1114–1135. [Google Scholar] [CrossRef]
- Gensini, V.A.; Haberlie, A.M.; Marsh, P.T. Practically perfect hindcasts of severe convective storms. Bull. Am. Meteorol. Soc. 2020, 101, E1259–E1278. [Google Scholar]
- Li, F.; Chavas, D.R.; Reed, K.A.; Dawson, D.T., II. Climatology of severe local storm environments and synoptic-scale features over North America in ERA5 reanalysis and CAM6 simulation. J. Clim. 2020, 33, 8339–8365. [Google Scholar]
- Taszarek, M.; Allen, J.T.; Groenemeijer, P.; Edwards, R.; Brooks, H.E.; Chmielewski, V.; Enno, S.E. Severe convective storms across Europe and the United States. Part I: Climatology of lightning, large hail, severe wind, and tornadoes. J. Clim. 2020, 33, 10239–10261. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Púčik, T.; Hoogewind, K.A.; Brooks, H.E. Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. J. Clim. 2020, 33, 10263–10286. [Google Scholar]
- Romanic, D.; Taszarek, M.; Brooks, H. Convective environments leading to microburst, macroburst and downburst events across the United States. Weather Clim. Extrem. 2022, 37, 100474. [Google Scholar] [CrossRef]
- Wang, X.M.; Yu, X.D.; Fei, H.Y.; Liu, X.L.; Zhu, H. A Review of Downburst Genesis Mechanism and Warning. Meteorol. Mon. 2023, 49, 129–145. [Google Scholar]
- Fei, H.Y.; Wang, X.M.; Zhou, X.G.; Yu, X.D. Climatic characteristics and environmental parameters of severe thunderstorm gales in China. Meteorol. Mon. 2016, 42, 1513–1521. [Google Scholar]
- Atkins, N.T.; Wakimoto, R.M. Wet microburst activity over the southeastern United States: Implications for forecasting. Weather Forecast. 1991, 6, 470–482. [Google Scholar] [CrossRef]
- James, R.P.; Markowski, P.M. A numerical investigation of the effects of dry air aloft on deep convection. Mon. Weather Rev. 2010, 138, 140–161. [Google Scholar] [CrossRef]
- Schenkman, A.D.; Xue, M. Bow-echo mesovortices: A review. Atmos. Res. 2016, 170, 1–13. [Google Scholar] [CrossRef]
- Gultepe, I.; Sharman, R.; Williams, P.D.; Zhou, B.; Ellrod, G.; Minnis, P.; Trier, S.; Griffin, S.; Yum, S.S.; Gharabaghi, B.; et al. A review of high impact weather for aviation meteorology. Pure Appl. Geophys. 2019, 176, 1869–1921. [Google Scholar]
- Fujita, T.T.; Wakimoto, R.M. Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon. Weather Rev. 1981, 109, 1438–1456. [Google Scholar] [CrossRef]
- Wilson, J.W.; Roberts, R.D.; Kessinger, C.; McCarthy, J. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Appl. Meteorol. Climatol. 1984, 23, 898–915. [Google Scholar] [CrossRef]
- McCarthy, J.; Serafin, R.; Wilson, J.; Evans, J.; Kessinger, C.; Mahoney, W.P., III. Addressing the microburst threat to aviation: Research-to-operations success story. Bull. Am. Meteorol. Soc. 2022, 103, E2845–E2861. [Google Scholar] [CrossRef]
- Pourtakdoust, S.H.; Kiani, M.; Hassanpour, A. Optimal trajectory planning for flight through microburst wind shears. Aerosp. Sci. Technol. 2011, 15, 567–576. [Google Scholar] [CrossRef]
- Bolgiani, P.; Santos-Muñoz, D.; Fernández-González, S.; Sastre, M.; Valero, F.; Martín, M.L. Microburst detection with the WRF model: Effective resolution and forecasting indices. J. Geophys. Res. Atmos. 2020, 125, e2020JD032883. [Google Scholar] [CrossRef]
- Wilson, J.W.; Moore, J.A.; Foote, G.B.; Martner, B.; Rodi, A.R.; Uttal, T.; Wilczak, J.M. Convection initiation and downburst experiment (CINDE). Bull. Am. Meteorol. Soc. 1988, 69, 1328–1347. [Google Scholar] [CrossRef]
- Merritt, M.W. Automated detection of microburst windshear for Terminal Doppler Weather Radar. In Proceedings of the Digital Image Processing and Visual Communications Technologies in Meteorology, San Diego, CA, USA, 25 January 1987; SPIE: Cergy, France, 1987; Volume 846, pp. 61–69. [Google Scholar]
- Yu, X.D.; Zhang, A.M.; Zheng, Y.Y.; Fang, C.; Zhu, H.F.; Wu, L.L. Doppler Radar Analysis on a Series of Downburst Events. Q. J. Appl. Meteorol. 2006, 17, 385–393. [Google Scholar]
- Wu, F.F.; Wang, H.; Wei, Y.Y.; Wang, Q. Analysis of a Strong Gust Front and Downburst with Doppler Weather Radar Data. Meteorol. Mon. 2009, 35, 55–64. [Google Scholar]
- Luo, H.; Zhang, J.; Zhu, K.Y.; Zhen, J.F.; Fan, Y.; Gao, X.Q. Study of the radar quantitative index of forewarning downburst. Acta Meteorol. Sin. 2015, 5, 853–867. [Google Scholar]
- Guo, Z.L.; Xie, W.F.; Zheng, J.J. Analysis on a low-level wind shear event under a microburst in Guangzhou Baiyun Airport. Bimon. Xinjiang Meteorol. 2019, 13, 71–78. [Google Scholar]
- Pearson, C.; Yu, T.Y.; Bodine, D.; Torres, S.; Reinhart, A. A Framework for Comparisons of Downburst Precursor Observations using an All-Digital Phased Array Weather Radar. J. Atmos. Ocean. Technol. 2023, 40, 919–938. [Google Scholar]
- Pryor, K.L. Downburst prediction applications of meteorological geostationary satellites. In Proceedings of the Remote Sensing of the Atmosphere, Clouds, and Precipitation V, Beijing, China, 8 November 2014; SPIE: Cergy, France, 2014; Volume 9259, pp. 60–73. [Google Scholar]
- Pryor, K.L. Progress and developments of downburst prediction applications of GOES. Weather Forecast. 2015, 30, 1182–1200. [Google Scholar]
- Pryor, K.L. Advances in downburst monitoring and prediction with GOES-16. In Proceedings of the 17th Conference on Mesoscale Processes, San Diego, CA, USA, 24–27 July 2017. [Google Scholar]
- Pryor, K.L. Downburst monitoring and prediction studies. In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 411–429. [Google Scholar]
- Pryor, K.; Demoz, B. A retrospective satellite analysis of the June 2012 North American Derecho. Remote Sens. 2022, 14, 3479. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, J.; Che, Y.; Wang, G.; Ren, T.; Hua, Z.; Tian, W.; Su, Z.; Su, L. Evolution and Structure of a Dry Microburst Line Observed by Multiple Remote Sensors in a Plateau Airport. Remote Sens. 2022, 14, 3841. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, F.; Wang, X.; Hao, Y. Review on the Development of Low-Level Windshear Detection Technology. In Proceedings of the 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), Suzhou, China, 22–24 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Zhao, W.K.; Zhao, S.J.; Shan, Y.L.; Sun, X.J. Numerical Simulation for Wind Shear Detection with a Glide Path Scanning Algorithm Based on Wind LiDAR. IEEE Sens. J. 2021, 21, 20248–20257. [Google Scholar] [CrossRef]
- Frehlich, R. Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Ocean. Technol. 1997, 14, 54–75. [Google Scholar] [CrossRef]
- Krishnamurthy, R.; Choukulkar, A.; Calhoun, R.; Fine, J.; Oliver, A.; Barr, K.S. Coherent Doppler lidar for wind farm characterization. Wind Energy 2013, 16, 189–206. [Google Scholar] [CrossRef]
- Thobois, L.; Cariou, J.P.; Gultepe, I. Review of lidar-based applications for aviation weather. Pure Appl. Geophys. 2019, 176, 1959–1976. [Google Scholar] [CrossRef]
- O’Connor, E.; Hirsikko, A.; Halios, C.; Gryning, S.E.; Leinweber, R.; Manninen, A.; Marke, T.; Petersen, N.; Preissler, J.; Päschke, E.; et al. An emerging European Doppler lidar network for meteorological applications. In Proceedings of the EMS Annual Meeting: European Conference for Applied Meteorology and Climatology, Dublin, Ireland, 4–8 September 2017; p. 745. [Google Scholar]
- Vorobyeva, O.; Nechaj, P.; Gaál, L. Lidar-based detection of dangerous meteorological phenomena at the Bratislava Airport. Transp. Res. Procedia 2019, 43, 199–208. [Google Scholar] [CrossRef]
- Fuertes, F.C.; Iungo, G.V. Analysis of a Strong Gust Front and Downburst with Doppler Weather Radar Data & Porté-Agel, F. 3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry. J. Atmos. Ocean. Technol. 2014, 31, 1549–1556. [Google Scholar]
- Nijhuis, A.O.; Thobois, L.P.; Barbaresco, F.; De Haan, S.; Dolfi-Bouteyre, A.; Kovalev, D.; Krasnov, O.A.; Vanhoenacker-Janvier, D.; Wilson, R.; Yarovoy, A.G. Wind hazard and turbulence monitoring at airports with Lidar, Radar, and Mode-S downlinks: The UFO Project. Bull. Am. Meteorol. Soc. 2018, 99, 2275–2293. [Google Scholar] [CrossRef]
- Thobois, L.; Cariou, J.P.; Cappellazzo, V.; Musson, C.; Treve, V. Comparison and validation of wake vortex characteristics collected at different airports by different scanning lidar sensors. EPJ Web Conf. 2018, 176, 06002. [Google Scholar] [CrossRef]
- Hon, K.K.; Chan, P.W.; Chim, K.C.; De Visscher, I.; Thobois, L.; Rooseleer, F.; Troiville, A. Wake vortex measurements at the Hong Kong International Airport. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2011. [Google Scholar]
- Gao, H.; Li, J.; Chan, P.W.; Hon, K.K.; Wang, X. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar. Opt. Express 2018, 26, 16377–16392. [Google Scholar] [CrossRef]
- Winckelmans, G. LES investigation of aircraft wake two-vortex system in low level atmospheric turbulence. In APS Division of Fluid Dynamics Meeting Abstracts; APS: Phoenix, AZ, USA, 2005; Volume 58, p. KG–002. [Google Scholar]
- Frech, M.; Holzäpfel, F. Skill of an aircraft wake-vortex transport and decay model using short-term weather prediction and observation. In Proceedings of the 12th Conference on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, USA, 29 January–2 February 2006. [Google Scholar]
- Wang, Z.; Menenti, M. Challenges and opportunities in Lidar remote sensing. Front. Remote Sens. 2021, 2, 641723. [Google Scholar]
- Chan, P.W.; Shun, C.M.; Wu, K.C. Operational LIDAR-based system for automatic windshear alerting at the Hong Kong International Airport. In Proceedings of the 12th Conference on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, USA, 29 January–2 February 2006; Volume 6. [Google Scholar]
- Chan, P.W.; Lee, Y.F. Application of short-range lidar in wind shear alerting. J. Atmos. Ocean. Technol. 2012, 29, 207–220. [Google Scholar] [CrossRef]
- Hua, Z.Q.; Li, Q.; Huang, X.; Ma, X.L.; Tian, W.D.; Zhao, Q.N. Analysis of the typical application of laser wind measurement radar in aviation support. Laser Technol. 2020, 44, 600–604. [Google Scholar]
- Fu, J.; Li, J.; Wu, Q. Application and prospect of Dopplar lidar in the wind field observation. Acta Aerodyn. Sin. 2021, 39, 172–179. [Google Scholar]
- Fan, Q.; Zhu, X.L.; Zhou, D.F.; Zhou, D.F.; Zhou, J.; Luo, X.; Chen, C.L.; Tong, W.H.; Yang, Z.H. Analysis of the wind field characteristics using the wind lidar in a typical plateau airport. Laser Technol. 2020, 44, 525–531. [Google Scholar]
- Emanue, K.A. Atmospheric Convection; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Weisman, M.L.; Gilmore, M.S.; Wicker, L.J. The impact of convective storms on their local environment: What is an appropriate ambient sounding. In Proceedings of the 19th Conference on Severe Local Storms, Minneapolis, MN, USA, 14–18 September 1998; American Meteorological Society: Boston, MA, USA, 1998; Volume 238, p. 241. [Google Scholar]
- Li, Y.D.; Gao, S.T.; Liu, J.W. A calculation of convective energy and the method of severe weather forecasting. J. Appl. Meteorol. Sci. 2004, 15, 10–20. [Google Scholar]
- Cohen, A.E.; Coniglio, M.C.; Corfidi, S.F.; Corfidi, S.J. Discrimination of mesoscale convective system environments using sounding observations. Weather Forecast. 2007, 22, 1045–1062. [Google Scholar] [CrossRef]
- Feng, L.; Wang, H.X. Research on a Phenomenon of Momentum Downlink at Night at Yinchuan Hedong International Airport. J. Civ. Aviat. 2022, 6, 57–60+105. [Google Scholar]
- Wang, Z.M.; Ding, Y.H.; Zhang, Y.X.; Wang, C.M.; Li, J.B.; Gu, Y.L. Feature and Mechanism of the Foehn Weather on East Slope Taihang Mountains I: Statistic Feature. Plateau Meteorol. 2012, 31, 547–554. [Google Scholar]
- Wang, Z.M.; Ding, Y.H.; Zhang, Y.X.; Wang, C.M.; Li, J.B.; Gu, Y.L. Feature and Mechanism of the Foehn Weather on East Slope Taihang Mountains II: Case Analysis of the Effects of Lee Wave on Foehn Occurring and Moving. Plateau Meteorol. 2012, 31, 555–561. [Google Scholar]
- Fujita, T.T.; Caracena, F. An analysis of three weather-related aircraft accidents. Bull. Am. Meteorol. Soc. 1977, 58, 1164–1181. [Google Scholar] [CrossRef]
- Caracena, F. Multi-Scale Analyses of Meteorological Conditions Affecting Pan American Airways Flight 759; NOAA: Washington, DC, USA, 1983. [Google Scholar]
- Sun, L.F.; Guo, X.L.; Sun, L.T.; Fu, D.H. A Numerical Study of the Airplane Disaster-Producing Microburst on 22 June 2000 in Wuhan. Chin. J. Atmos. Sci. 2003, 27, 1077–1092. [Google Scholar]
- Chan, P.W.; Hon, K.K.; Li, Q.S. Low-level windshear associated with atmospheric boundary layer jets-Case studies. Atmósfera 2021, 34, 461–490. [Google Scholar] [CrossRef]
- Cho, J.H.; Baik, H.J. A study on the characteristics of low-level wind shear at Jeju International Airport from go-around flight perspective. J. Korean Soc. Aviat. Aeronaut. 2021, 29, 1–8. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, K.; Chen, X.; Liang, S.; Wu, J.; Zhang, W. Overview of low-level wind shear characteristics over Chinese mainland. Atmosphere 2021, 12, 628. [Google Scholar] [CrossRef]
- Sardjono, W.; Kusnoputranto, H.; Soesilo, T.E.B.; Utama, D.N.; Sudirwan, J. Study of runway crosswind and tailwind potential for airport sustainability: A study of Soekarno Hatta airport, Cengkareng, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 729, 012012. [Google Scholar] [CrossRef]
- Hon, K.K.; Chan, P.W. Historical analysis (2001–2019) of low-level wind shear at the Hong Kong International Airport. Meteorol. Appl. 2022, 29, e2063. [Google Scholar] [CrossRef]
- Khattak, A.; Chan, P.W.; Chen, F.; Peng, H. Time-Series Prediction of Intense Wind Shear Using Machine Learning Algorithms: A Case Study of Hong Kong International Airport. Atmosphere 2023, 14, 268. [Google Scholar] [CrossRef]
- Pilguj, N.; Taszarek, M.; Allen, J.T.; Hoogewind, K.A. Are trends in convective parameters over the United States and Europe consistent between reanalyses and observations? J. Clim. 2022, 35, 3605–3626. [Google Scholar]
- Pacey, G.P.; Schultz, D.M.; Garcia-Carreras, L. Severe convective windstorms in Europe: Climatology, preconvective environments, and convective mode. Weather Forecast. 2021, 36, 237–252. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Average power/W | ≤200 |
Wavelength/nm | 1550 |
Scan range(azimuth/pitch)/(°) | 0–360/−10–190 |
Detection range/km | 0.05–10 |
Range resolution/m | 100 (adjustable) |
Scanning mode | DBS/PPI/RHI/GP |
Minimum time resolution/s | ≤2 |
Elevation resolution/(°) | ≤0.1 |
Wind speed range/(m·s−1) | −60–+60 |
Radial velocity accuracy/(m·s−1) | ≤0.1 |
Wind angle accuracy/(°) | ≤3 |
Measurements | Radial velocity, horizontal and vertical winds, spectrum width, signal-to-noise ratio, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Zheng, J.; Pan, J.; Bai, H.; Zhang, J. Analysis of the Causes and Wind Field Structure of a Dry Microburst in a Weak Weather Background. Atmosphere 2023, 14, 1540. https://doi.org/10.3390/atmos14101540
Feng L, Zheng J, Pan J, Bai H, Zhang J. Analysis of the Causes and Wind Field Structure of a Dry Microburst in a Weak Weather Background. Atmosphere. 2023; 14(10):1540. https://doi.org/10.3390/atmos14101540
Chicago/Turabian StyleFeng, Liang, Jiafeng Zheng, Jia Pan, Hanbing Bai, and Jun Zhang. 2023. "Analysis of the Causes and Wind Field Structure of a Dry Microburst in a Weak Weather Background" Atmosphere 14, no. 10: 1540. https://doi.org/10.3390/atmos14101540
APA StyleFeng, L., Zheng, J., Pan, J., Bai, H., & Zhang, J. (2023). Analysis of the Causes and Wind Field Structure of a Dry Microburst in a Weak Weather Background. Atmosphere, 14(10), 1540. https://doi.org/10.3390/atmos14101540