Potential Health Impacts from a Wildfire Smoke Plume over Region Jämtland Härjedalen, Sweden
Abstract
:1. Introduction
2. Methods
2.1. Exposure Modeling
2.2. Exposure Simulation Scenario
2.3. Health Impact Calculations
2.4. Mortality
2.5. Cardio-Respiratory Hospital Admissions
2.6. Respiratory Emergency Visits
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balmes, J.R. Where There’s Wildfire, There’s Smoke. N. Engl. J. Med. 2018, 378, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.B.; Henderson, S.B.; Lambert, A.A.; Cromar, K.R.; Hall, J.A.; Cascio, W.E.; Smith, P.G.; Marsh, B.J.; Coefield, S.; Balmes, J.R.; et al. Respiratory Impacts of Wildland Fire Smoke: Future Challenges and Policy Opportunities. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2021, 18, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Noah, T.L.; Worden, C.P.; Rebuli, M.E.; Jaspers, I. The Effects of Wildfire Smoke on Asthma and Allergy. Curr. Allergy Asthma Rep. 2023, 23, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Doubleday, A.; Schulte, J.; Sheppard, L.; Kadlec, M.; Dhammapala, R.; Fox, J.; Busch Isaksen, T. Mortality associated with wildfire smoke exposure in Washington state, 2006–2017: A case-crossover study. Environ. Health 2020, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Guo, Y.; Yue, X.; Tong, S.; Gasparrini, A.; Bell, M.L.; Armstrong, B.; Schwartz, J.; Jaakkola, J.J.K.; Zanobetti, A.; et al. Mortality risk attributable to wildfire-related PM2.5 pollution: A global time series study in 749 locations. Lancet Planet Health 2021, 5, e579–e587. [Google Scholar] [CrossRef]
- Karanasiou, A.; Alastuey, A.; Amato, F.; Renzi, M.; Stafoggia, M.; Tobias, A.; Reche, C.; Forastiere, F.; Gumy, S.; Mudu, P.; et al. Short-term health effects from outdoor exposure to biomass burning emissions: A review. Sci. Total Environ. 2021, 781, 146739. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Samet, J.M.; Bromberg, P.A.; Tong, H. Cardiovascular health impacts of wildfire smoke exposure. Part. Fibre Toxicol. 2021, 18, 2. [Google Scholar] [CrossRef]
- Silva, J.S.; Harrison, S.P. Humans, Climate and Land Cover as Controls on European Fire Regimes. In Towards 1275 Integrated Fire Management-Outcomes of the European Project Fire Paradox; Silva, J.S., Rego, F.C., Fernandes, P., Rigolot, E., Eds.; European Forest Institute: Joensuu, Finland, 2021; pp. 49–59. [Google Scholar]
- Romeiro, J.M.N.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change—A review of modelling approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Púčik, T.; Groenemeijer, P.; Rädler, A.T.; Tijssen, L.; Nikulin, G.; Prein, A.F.; van Meijgaard, E.; Fealy, R.; Jacob, D.; Teichmann, C. Future changes in European severe convection environments in a regional climate model ensemble. J. Clim. 2017, 30, 6771. [Google Scholar] [CrossRef]
- Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H. Risk of large-scale fires in boreal forests of Finland under changing climate. Nat. Hazards Earth Syst. Sci. 2016, 16, 239–253. [Google Scholar] [CrossRef]
- Lund, M.T.; Nordling, K.; Gjelsvik, A.B.; Samset, B.H. The influence of variability on fire weather conditions in high latitude regions under present and future global warming. Environ. Res. Commun. 2023; in press. [Google Scholar] [CrossRef]
- Astrup, R.; Bernier, P.Y.; Genet, H.; Lutz, D.A.; Bright, R.M. A sensible climate solution for the boreal forest. Nat. Clim. Chang. 2018, 8, 11–12. [Google Scholar] [CrossRef]
- Cimdins, R.; Krasovskiy, A.; Kraxner, F. Regional Variability and Driving Forces behind Forest Fires in Sweden. Remote Sens. 2022, 14, 5826. [Google Scholar] [CrossRef]
- MSB. Fires in Forest or Land. 2022. Available online: https://ida.msb.se/ida2#page=3b3f50b4-48d8-44da-aba5-b91136ceb57b (accessed on 11 June 2023).
- Tornevi, A.; Andersson, C.; Carvalho, A.C.; Langner, J.; Stenfors, N.; Forsberg, B. Respiratory Health Effects of Wildfire Smoke during Summer of 2018 in the Jämtland Härjedalen Region, Sweden. Int. J. Environ. Res. Public Health 2021, 18, 6987. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Langner, J.; Bergstroumm, R. Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus B Chem. Phys. Meteorol. 2007, 59, 77–98. [Google Scholar]
- Robertson, L.; Langner, J.; Engardt, M. An Eulerian limited-area atmospheric transport model. J. Appl. Meteorol. 1999, 38, 190–210. [Google Scholar] [CrossRef]
- Andersson, C.; Alpfjord, H.; Robertson, L.; Karlsson, P.E.; Engardt, M. Reanalysis of and attribution to near-surface ozone concentrations in Sweden during 1990–2013. Atmos. Chem. Phys. 2017, 17, 13869–13890. [Google Scholar]
- Geels, C.; Andersson, C.; Hänninen, O.; Lansø, A.S.; Schwarze, P.E.; Skjøth, C.A.; Brandt, J. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe—Sensitivity to changes in climate, anthropogenic emissions, population and building stock. Int. J. Environ. Res. Public Health 2015, 12, 2837–2869. [Google Scholar] [CrossRef]
- Orru, H.; Åström, C.; Andersson, C.; Tamm, T.; Ebi, K.L.; Forsberg, B. Ozone and heat-related mortality in Europe in 2050 significantly affected by changes in climate, population and greenhouse gas emission. Environ. Res. Lett. 2019, 14, 074013. [Google Scholar] [CrossRef]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergstrom, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model-technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- Carter, W.P. Condensed atmospheric photooxidation mechanisms for isoprene. Atmos. Environ. 1996, 30, 4275–4290. [Google Scholar] [CrossRef]
- Bergström, J.R. Carbonaceous Aerosol in Europe-Out of the Woods and Into the Blue? Ph.D. Thesis, University of Gothenburg, Gothenburg, Sweden, 2015. [Google Scholar]
- Hodzic, A.; Kasibhatla, P.S.; Jo, D.S.; Cappa, C.D.; Jimenez, J.L.; Madronich, S.; Park, R.J. Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys. 2016, 16, 7917–7941. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Walter, C.; Freitas, S.R.; Kottmeier, C.; Kraut, I.; Rieger, D.; Vogel, H.; Vogel, B. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol. Atmos. Chem. Phys. 2016, 16, 9201–9219. [Google Scholar] [CrossRef]
- Frohn, L.; Geels, C.; Andersen, C.; Andersson, C.; Bennet, C.; Christensen, J.H.; Im, U.; Karvosenoja, N.; Kindler, P.A.; Kukkonen, J.; et al. Evaluation of multidecadal high-resolution atmospheric chemistry transport modelling for exposure assessments in the continental Nordic countries. Atmos. Environ. 2022, 290, 119334. [Google Scholar] [CrossRef]
- Tsyro, S.; Aas, W.; Colette, A.; Andersson, C.; Bessagnet, B.; Ciarelli, G.; Couvidat, F.; Cuvelier, K.; Manders, A.; Mar, K.; et al. Eurodelta multi-model simulated and observed PM trends in Europe in the period of 1990–2010. Atmos. Chem. Phys. 2022, 22, 7207–7257. [Google Scholar] [CrossRef]
- Johnson, M.M.; Garcia-Menendez, F. Uncertainty in Health Impact Assessments of Smoke from a Wildfire Event. Geohealth 2022, 6, e2021GH000526. [Google Scholar] [CrossRef]
- Matz, C.J.; Egyed, M.; Xi, G.; Racine, J.; Pavlovic, R.; Rittmaster, R.; Henderson, S.B.; Stieb, D.M. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020, 725, 138506. [Google Scholar] [CrossRef]
- Liu, Y.; Austin, E.; Xiang, J.; Gould, T.; Larson, T.; Seto, E. Health impact assessment of the 2020 Washington State wildfire smoke episode: Excess health burden attributable to increased PM2.5 exposures and potential exposure reductions. GeoHealth 2021, 5, e2020GH000359. [Google Scholar] [CrossRef]
- Hahn, M.B.; Kuiper, G.; O’Dell, K.; Fischer, E.V.; Magzamen, S. Wildfire smoke is associated with an increased risk of cardiorespiratory emergency department visits in Alaska. GeoHealth 2021, 5, e2020GH000349. [Google Scholar] [CrossRef]
- AMAP. AMAP Assessment 2021: Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality, and Human Health; Arctic Monitoring and Assessment Programme (AMAP): Tromsø, Norway, 2021; x + 375p. [Google Scholar]
- Magzamen, S.; Gan, R.W.; Liu, J.; O’Dell, K.; Ford, B.; Berg, K.; Bol, K.; Wilson, A.; Fischer, E.V.; Pierce, J.R. Differential Cardiopulmonary Health Impacts of Local and Long-Range Transport of Wildfire Smoke. Geohealth 2021, 5, e2020GH000330. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.W.; Ford, B.; Lassman, W.; Pfister, G.; Vaidyanathan, A.; Fischer, E.; Volckens, J.; Pierce, J.R.; Magzamen, S. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. Geohealth 2017, 1, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, O.O.; Salonen, R.O.; Koistinen, K.; Lanki, T.; Barregard, L.; Jantunen, M. Population exposure to fine particles and estimated excess mortality in Finland from an East European wildfire episode. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 414–422. [Google Scholar] [CrossRef] [PubMed]
Health Outcome | RR/% Increase | Reference | Baseline |
---|---|---|---|
StTM | RR 1.021 (95% CI 1.018, 1.024) per 10 μg/m3 increase in daily mean | Chen et al., 2021 [7] | 2.9 per day per 100,000 inhabitants of the JH county (2019), National Board of Health and Welfare |
StCVDHA | 3.68% (95% CI −1.73, 9.09) per 10 μg/m3 increase in daily mean | Karanasiou et al., 2021 [6] | 5.5 per day per 100,000 inhabitants of the JH county (2019), National Board of Health and Welfare |
StRDHA | 9.19% (95% CI 5.71, 12.68) per 10 μg/m3 increase in daily mean | Karanasiou et al., 2021 [6] | 0.6 per day per 100,000 inhabitants of the JH county (2019), National Board of Health and Welfare |
StAERV | RR 1.37 (95% CI 1.08, 1.73) per 10 μg/m3 increase in daily mean | Calculated from Tornevi et al., 2021 [16] | 2.10 per day per 100,000 inhabitants, Tornevi et al., 2021 [16] |
Health Outcome | Baseline Number | Scenario I Excess Cases (95% CI) | Scenario II Excess Cases (95% CI) |
---|---|---|---|
StTM | 16.5 | 0.37 (0.32, 0.43) | 1.04 (0.89, 1.19) |
StCVDHA | 31.3 | 1.2 (−0.59, 3.08) | 3.46 (−1.63, 8.55) |
StRDHA | 3.4 | 0.34 (0.21, 0.47) | 0.94 (0.59, 1.30) |
StAERV | 11.9 | 4.8 (1.03, 9.43) | 13.3 (2.87, 26.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tornevi, A.; Andersson, C.; Carvalho, A.; Langner, J.; Forsberg, B. Potential Health Impacts from a Wildfire Smoke Plume over Region Jämtland Härjedalen, Sweden. Atmosphere 2023, 14, 1491. https://doi.org/10.3390/atmos14101491
Tornevi A, Andersson C, Carvalho A, Langner J, Forsberg B. Potential Health Impacts from a Wildfire Smoke Plume over Region Jämtland Härjedalen, Sweden. Atmosphere. 2023; 14(10):1491. https://doi.org/10.3390/atmos14101491
Chicago/Turabian StyleTornevi, Andreas, Camilla Andersson, Ana Carvalho, Joakim Langner, and Bertil Forsberg. 2023. "Potential Health Impacts from a Wildfire Smoke Plume over Region Jämtland Härjedalen, Sweden" Atmosphere 14, no. 10: 1491. https://doi.org/10.3390/atmos14101491
APA StyleTornevi, A., Andersson, C., Carvalho, A., Langner, J., & Forsberg, B. (2023). Potential Health Impacts from a Wildfire Smoke Plume over Region Jämtland Härjedalen, Sweden. Atmosphere, 14(10), 1491. https://doi.org/10.3390/atmos14101491