Seasonal Lifting Condensation Level Trends: Implications of Warming and Reforestation in Appalachia’s Deciduous Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data Acquisition
2.2. Data Processing
3. Results and Discussion
3.1. Appalachian LCL Climatology
3.2. Cross Appalachian LCL Gradient
3.3. LCL Seasonality and Trends
3.4. Implications of Warming and Reforestation in Appalachia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barry, R.G. Mountains and their climatological study. In Mountain Weather and Climate, 3rd ed.; Cambridge University Press: New York, NY, USA, 2008; pp. 1–23. ISBN 978-0-521-68158-2. [Google Scholar]
- Martucci, G.; Milroy, C.; O’Dowd, C.D. Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers. J. Atmos. Ocean. Technol. 2010, 27, 305–318. [Google Scholar] [CrossRef]
- Rogers, A.D.; Yau, B.E. Formation of Cloud Droplets. In A Short Course in Cloud Physics, 3rd ed.; Butterworth-Heinemann: Burlington, MA, USA, 1989; pp. 81–98. ISBN 0-7506-3215-1. [Google Scholar]
- Medina, S.; Houze, R.A., Jr. Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc. 2003, 129, 345–371. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, B.R.; Rutledge, S.A.; Bruning, E.C.; Pierce, J.R.; Kodros, J.K.; Lang, T.J.; MacGorman, D.R.; Krehbiel, P.R.; Rison, W. Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. J. Geophys. Res. Atmos. 2015, 120, 6575–6596. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Clouds in tropical cyclones. Mon. Wea. Rev. 2010, 138, 293–344. [Google Scholar] [CrossRef]
- Georgis, J.F.; Roux, F.; Chong, M.; Pradier, S. Triple-Doppler radar analysis of the heavy rain event observed in the Lago Maggiore region during MAP IOP 2b. Quart. J. Roy. Meteor. Soc. 2003, 129, 495–522. [Google Scholar] [CrossRef]
- Petty, G.W. Properties of Radiation. In A First Course in Atmospheric Radiation, 2nd ed.; Sundog Publishing: Madison, WI, USA, 2006; p. 52. ISBN 978-0-9729033-1-8. [Google Scholar]
- Müller, H. On the radiation budget in the Alps. Int. J. Climatol. 1985, 5, 445–462. [Google Scholar] [CrossRef]
- Anderson, M.; Diak, G.; Gao, F.; Knipper, K.; Hain, C.; Eichelmann, E.; Hemes, K.S.; Baldocchi, D.; Kustas, W.; Yang, Y. Impact of Insolation Data Source on Remote Sensing Retrievals of Evapotranspiration over the California Delta. Remote Sens. 2019, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.L.; Houze, R., Jr. A. A flash-flooding storm at the steep edge of high terrain: Disaster in the Himalayas. Bull. Am. Meteorol. Soc. 2012, 93, 1713–1724. [Google Scholar] [CrossRef] [Green Version]
- Dottori, F.; Szewczyk, W.; Ciscar, J.C.; Zhao, F.; Alfieri, L.; Hirabayahi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Romps, D.M. Exact Expression for the Lifting Condensation Level. J. Atmos. Sci. 2017, 74, 3891–3900. [Google Scholar] [CrossRef]
- Stackpole, J.D. Numerical analysis of atmospheric soundings. J. Appl. Meteor. 1967, 6, 464–467. [Google Scholar] [CrossRef]
- Craven, J.P.; Jewell, R.E.; Brooks, H.E. Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecast. 2002, 17, 885–890. [Google Scholar] [CrossRef]
- Melfi, S.H.; Whiteman, D. Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar. Bull. Am. Meteorol. Soc. 1985, 66, 1288–1292. [Google Scholar] [CrossRef]
- Pinty, J.P.; Mascart, P.; Richard, E.; Rosset, R. An investigation of mesoscale flows induced by vegetation inhomogeneities using an evapotranspiration model calibrated against HAPEX-MOBILHY data. J. Appl. Meteor. 1989, 28, 976–992. [Google Scholar] [CrossRef]
- Helfand, H.M.; Schubert, S.D. Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Clim. 1995, 8, 784–806. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Bian, X.; Zhong, S. Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor. 1997, 36, 1363–1376. [Google Scholar] [CrossRef]
- Houze, R., Jr. A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Nadolski, V. Automated surface observing system user’s guide. NOAA Publ. 1992, 12, 94. Available online: https://www.weather.gov/media/asos/aum-toc.pdf (accessed on 17 May 2022).
- Strajnar, B. Validation of Mode-S meteorological routine air report aircraft observations. J. Geophys. Res. Atmos. 2012, 117, D23. [Google Scholar] [CrossRef]
- Chernykh, I.V.; Alduchov, O.A.; Eskridge, R.E. Trends in low and high cloud boundaries and errors in height determination of cloud boundaries. Bull. Am. Meteorol. Soc. 2001, 82, 1941–1948. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.A.; Pederson, N. Regional variation of transient precipitation and rainless-day frequency across a subcontinental hydroclimate gradient. J. Extrem. Events 2015, 2, 155000. [Google Scholar] [CrossRef]
- Easterling, D.R.; Kunkel, K.E.; Arnold, J.R.; Knutson, T.; LeGrande, A.N.; Leung, L.R.; Vose, R.S.; Waliser, D.E.; Wehner, M.F. Precipitation change in the United States. Clim. Sci. Spec. Rep. Fourth Natl. Clim. Assess. 2017, 1, 207–230. [Google Scholar] [CrossRef] [Green Version]
- Bones, J. The Forest Resources of West Virginia; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1978. [Google Scholar]
- Morin, R.S.; Cook, G.W.; Barnett, C.J.; Butler, B.J.; Crocker, S.J.; Hatfield, M.A.; Kurtz, C.M.; Lister, T.W.; Luppold, W.G.; McWilliams, W.H.; et al. West Virginia Forests. 2013. Available online: https://www.nrs.fs.fed.us/pubs/52444 (accessed on 17 May 2022).
- Kutta, E.; Hubbart, J.A. Changing Climatic Averages and Variance: Implications for Mesophication at the Eastern Edge of North America’s Eastern Deciduous Forest. Forests 2018, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Frankson, R.; Kunkel, K.; Champion, S.; Stewart, B.; DeGaetano, A.T.; Sweet, W. Pennsylvania State Climate Summary; NOAA Technical Report NESDIS 149-PA; 2017, p.4. Available online: https://statesummaries.ncics.org/pa (accessed on 1 May 2020).
- Kutta, E.; Hubbart, J. Observed mesoscale hydroclimate variability of North America’s Allegheny Mountains at 40.2° N. Climate 2019, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Denny, E.G.; Siccama, T.G.; Lee, X. Evidence for a rising cloud ceiling in eastern North America. J. Clim. 2003, 16, 2093–2098. [Google Scholar] [CrossRef]
- Young, D.R.; Smith, W.K. Effect of cloud cover on photosynthesis and transpiration in the subalpine understory species Arnica latifolia. Ecology 1983, 64, 681–687. [Google Scholar] [CrossRef]
- Johnson, D.M.; Smith, W.K. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce–fir forest (USA). Am. J. Bot. 2006, 93, 1625–1632. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.M.; Smith, W.K. Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the Southern Appalachian Mountains, USA. Tree Physiol. 2008, 28, 385–392. [Google Scholar] [CrossRef] [Green Version]
- McEwan, R.W.; Dyer, J.M.; Pederson, N. Multiple interacting ecosystem drivers: Toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 2011, 34, 244–256. [Google Scholar] [CrossRef]
- Ulrey, C.; Quintana-Ascencio, P.F.; Kauffman, G.; Smith, A.B.; Menges, E.S. Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biol. Conserv. 2016, 200, 80–92. [Google Scholar] [CrossRef]
- Buck, A.L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor. 1981, 20, 1527–1532. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. Water Vapor and Other Gases. In An Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1998; pp. 37–52. ISBN 0-387-94937-2. [Google Scholar]
- Pohlert, T. Package ‘trend’. 2018. Available online: https://cran.r-project.org/web/packages/trend/trend.pdf (accessed on 15 August 2020).
- Wilks, D.S. Mann-Kendal Trend Test. In Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Oxford, UK, 2011; pp. 166–168. ISBN 978-0-12-385022-5. [Google Scholar]
- Rose, B.E. CLIMLAB: A python toolkit for interactive, process-oriented climate modeling. J. Open Source Softw. 2018, 3, 659. [Google Scholar] [CrossRef]
- Pietruszka, K. Topographic database of the Geocontext-Profiler program. 2011. Available online: http://www.geocontext.org/publ/2011/08/geocontext-profiler-baza/ (accessed on 16 October 2018).
- Houze, R.A. Clouds in Shallow Layers at Low, Middle, and High Levels. Cloud Dynamics, 2nd ed.; Academic Press: Oxford, UK, 2014; pp. 101–123. ISBN 978-0-12-374266-7. [Google Scholar]
- Stull, R.B. Mean Boundary Layer Conditions. In An Introduction to Boundary Layer Meteorology; Mysak, L.A., Hamilton, K., Eds.; Springer Science & Business Media: Vancouver, BC, Canada, 2009; pp. 1–28. ISBN 978-90-277-2769-5. [Google Scholar]
- Ekhart, E. 1948: De la structure thermique de l’atmosphere dans la montagne [On the thermal structure of the mountain atmosphere]. La Meteorol. 1948, 4, 3–26. [Google Scholar]
- DeCarlo, L.T. On the meaning and use of kurtosis. Psychol. Methods 1997, 2, 292. Available online: http://www.columbia.edu/~ld208/psymeth97.pdf (accessed on 17 May 2022). [CrossRef]
- Cox, W. The Evolving Urban Form: Philadelphia. 2014. Available online: http://www.newgeography.com/content/004294-the-evolving-urban-form-philadelphia (accessed on 6 December 2018).
- Zakšek, K.; Oštir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Marty, C.; Philipona, R.; Fröhlich, C.; Ohmura, A. Altitude dependence of surface radiation fluxes and cloud forcing in the Alps: Results from the alpine surface radiation budget network. Theor. Appl. Climatol. 2002, 72, 137–155. [Google Scholar] [CrossRef]
- Berry, Z.C.; Smith, W.K. Ecophysiological importance of cloud immersion in a relic spruce–fir forest at elevational limits, southern Appalachian Mountains, USA. Oecologia 2013, 173, 637–648. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Dirmeyer, P.A.; Cash, B.A.; Kinter III, J.L.; Stan, C.; Jung, T.; Marx, L.; Towers, P.; Wedi, N.; Adams, J.; Altshuler, E.L.; et al. Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeorol. 2013, 13, 981–995. [Google Scholar] [CrossRef] [Green Version]
- Wulfmeyer, V.; Turner, D.D.; Baker, B.; Banta, R.; Behrendt, A.; Bonin, T.; Brewer, W.A.; Buban, M.; Choukulkar, A.; Dumas, E.; et al. A new research approach for observing and characterizing land-atmosphere feedback. Bull. Am. Meteorol. Soc. 2018, 99, 1639–1667. [Google Scholar] [CrossRef]
- Banta, R.M. The role of mountain flows in making clouds. Atmospheric processes over complex terrain. Am. Meteorol. Soc. 1990, 23, 229–283. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Saharia, M.; Kirstetter, P.E.; Vergara, H.; Gourley, J.J.; Hong, Y.; Giroud, M. Mapping flash flood severity in the United States. J. Hydrometeorol. 2017, 18, 397–411. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 4. Available online: https://repository.rothamsted.ac.uk/item/8v5v7/evaporation-and-environment (accessed on 17 May 2022).
- Troen, I.B.; Mahrt, L. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound. Layer Meteor. 1986, 37, 129–148. [Google Scholar] [CrossRef]
- Lenderink, G.; Barbero, R.; Loriaux, J.M.; Fowler, H.J. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Clim. 2017, 30, 6037–6052. [Google Scholar] [CrossRef]
- Davis, R.E.; Hayden, B.P.; Gay, D.A.; Phillips, W.L.; Jones, G.V. The North Atlantic subtropical anticyclone. J. Clim. 1997, 10, 728–744. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Ntelekos, A.A.; Villarini, G.; Steiner, M. Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resour. Res. 2011, 47, W04514. [Google Scholar] [CrossRef]
- Santanello, J.A., Jr.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.L.; Tawfik, A.B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.P.; van Heerwaarden, C.; et al. Land-atmosphere interactions: The LoCo perspective. Bull. Am. Meteorol. Soc. 2017, 99, 1253–1272. [Google Scholar] [CrossRef]
- Xie, L.; Yan, T.; Pietrafesa, L.J.; Morrison, J.M.; Karl, T. Climatology and interannual variability of North Atlantic hurricane tracks. J. Clim. 2005, 18, 5370–5381. [Google Scholar] [CrossRef]
- Diem, J.E. Influences of the Bermuda High and atmospheric moistening on changes in summer rainfall in the Atlanta, Georgia region, USA. Int. J. Climatol. 2013, 33, 160–172. [Google Scholar] [CrossRef]
- Leaning, R.; Tuzet, A.; Perrier, A. Stomata as Part of the Soil-Plant-Atmosphere Continuum. In Forests at the Land-Atmosphere Interface; CABI Publishing: Cambridge, MA, USA, 2004; pp. 9–25. ISBN 0-85199-677-9. [Google Scholar]
- Oke, T.R. Energy and mass exchanges. In Boundary Layer Climates; Halsted Press: London, UK, 1978; pp. 3–30. ISBN 0-416-70520-0. [Google Scholar]
- Fracheboud, Y.; Luquez, V.; Bjorken, L.; Sjodin, A.; Tuominen, H.; Jansson, S. The control of autumn senescence in European aspen. Plant Physiol. 2009, 149, 1982–1991. [Google Scholar] [CrossRef] [PubMed]
- Polgar, C.A.; Primack, R.B. Leaf-out phenology of temperate woody plants: From trees to ecosystems. New Phytol. 2011, 191, 926–941. [Google Scholar] [CrossRef]
- Mölders, N.; Raabe, A. Numerical investigations on the influence of subgrid-scale surface heterogeneity on evapotranspiration and cloud processes. J. Appl. Meteor. 1996, 35, 782–795. [Google Scholar] [CrossRef]
- Habeeb, D.; Vargo, J.; Stone, B. Rising heat wave trends in large US cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Worster, D. Dust Bowl: The Southern Plains in the 1930s; 25th Anniversary ed.; Oxford University Press: New York, NY, USA, 2004; pp. 3–8. ISBN 978-0-19-517489-2. [Google Scholar]
- Heim, R.R., Jr. A Comparison of the Early Twenty-First Century Drought in the United States to the 1930s and 1950s Drought Episodes, Amer. Meteor. Soc. 2017, 98, 2579–2592. [Google Scholar] [CrossRef]
- Splinter, W.E. Center-Pivot Irrigation. Sci. Am. 1976, 234, 90–99. Available online: https://www.jstor.org/stable/24950374 (accessed on 17 May 2022). [CrossRef]
- Betts, A.K. Understanding hydrometeorology using global models. Bull. Am. Meteorol. Soc. 2004, 85, 1673–1688. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K. Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Syst. 2009, 1, 4. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, J.; Chen, H.; Liang, X.Z. Coupling between land surface fluxes and lifting condensation level: Mechanisms and sensitivity to model physics parameterizations. J. Geophys. Res. Atmos. 2021, 126, e2020JD034313. [Google Scholar] [CrossRef]
- Gunderson, C.A.; Edwards, N.T.; Walker, A.V.; O’Hara, K.H.; Campion, C.M.; Hanson, P.J. Forest phenology and a warmer climate–growing season extension in relation to climatic provenance. Glob. Chang. Biol. 2012, 18, 2008–2025. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Miniat, C.F.; Elliott, K.J.; Swank, W.T.; Brantley, S.T.; Laseter, S.H. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Glob. Chang. Biol. 2016, 22, 2997–3012. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, G.J.; Abrams, M.D. Is climate an important driver of post-European vegetation change in the Eastern United States? Glob. Chang. Biol. 2015, 21, 314–334. [Google Scholar] [CrossRef]
Airport | Latitude | Longitude | Elevation | POR | Observations |
---|---|---|---|---|---|
Mansfield (MFD) | 40.82° N | 82.52° W | 395 m | 1948–2017 1 | 437,882 |
Pittsburgh (PIT) | 40.49° N | 80.23° W | 367 m | 1949–2017 | 571,954 |
Johnstown (JST) | 40.32° N | 78.83° W | 696 m | 1973–2017 | 316,120 |
Altoona (AOO) | 40.30° N | 78.32° W | 458 m | 1949–2017 2 | 420,066 |
Harrisburg (CXY) | 40.22° N | 76.85° W | 106 m | 1948–2017 3 | 516,210 |
Philadelphia (PHL) | 39.87° N | 75.24° W | 11 m | 1948–2017 | 608,283 |
Atlantic City (ACY) | 39.46° N | 74.58° W | 23 m | 1948–2017 | 555,004 |
APT | Min | Median | Mean | Max | St Dev | IQR | Skew | Kurt |
---|---|---|---|---|---|---|---|---|
MFD | 0 | 572 | 696 | 4259 | 529 | 713 | 1.01 | 0.85 |
PIT | 0 | 685 | 804 | 4432 | 570 | 774 | 0.99 | 0.75 |
JST | 0 | 570 | 700 | 4449 | 551 | 732 | 1.10 | 1.25 |
AOO | 0 | 657 | 767 | 4134 | 558 | 747 | 0.99 | 0.96 |
CXY | 0 | 821 | 908 | 4438 | 642 | 965 | 0.80 | 0.42 |
PHL | 0 | 785 | 890 | 4363 | 617 | 950 | 0.69 | −0.03 |
ACY | 0 | 570 | 726 | 4556 | 592 | 870 | 1.00 | 0.62 |
APT | Min | Q1 | Med | Mean | Q3 | Max | St Dev | Skew | Kurt |
---|---|---|---|---|---|---|---|---|---|
MFD | 855 | 999 | 1093 | 1091 | 1172 | 1384 | 121 | 0.06 | −0.66 |
PIT | 960 | 1081 | 1148 | 1171 | 1232 | 1500 | 121 | 0.80 | 0.16 |
JST | 1175 | 1302 | 1372 | 1395 | 1470 | 1832 | 134 | 0.89 | 0.47 |
AOO | 1014 | 1138 | 1203 | 1226 | 1297 | 1566 | 114 | 0.80 | 0.04 |
CXY | 775 | 931 | 997 | 1015 | 1082 | 1351 | 121 | 0.56 | −0.13 |
PHL | 669 | 824 | 887 | 902 | 974 | 1239 | 107 | 0.47 | −0.25 |
ACY | 530 | 677 | 738 | 749 | 813 | 1029 | 97 | 0.44 | −0.22 |
Warm Season | Cool Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Slope | p-Value | CI | Δ | n | Slope | p-Value | CI | Δ | |
MFD | 64 | −2.5 | 0.011 * | −4.4, −0.5 | −160 | 64 | 0.5 | 0.491 | −0.9, 1.7 | 32 |
PIT | 69 | −0.3 | 0.608 | −1.6, 0.8 | −21 | 68 | 1.7 | 0.006 * | 0.6, 2.9 | 117 |
JST | 45 | −1.0 | 0.363 | −3.1, 1.1 | −45 | 44 | 3.6 | 0.001 * | 1.6, 5.7 | 162 |
AOO | 50 | −1.3 | 0.216 | −3.6, 1.1 | −65 | 48 | 1.7 | 0.143 | −0.9, 4.1 | 85 |
CXY | 70 | −0.1 | 0.855 | −1.5, 1.5 | −7 | 69 | 0.7 | 0.216 | −0.4, 1.8 | 49 |
PHL | 70 | 2.2 | 0.001 * | 0.9, 3.4 | 154 | 69 | 2.7 | 0.000 * | 1.6, 3.9 | 189 |
ACY | 70 | 0.4 | 0.394 | −0.6, 1.5 | 28 | 69 | 2.6 | 0.000 * | 1.3, 3.7 | 182 |
CAT Avg | 70 | −0.3 | 0.530 | −1.2, 0.6 | −19 | 69 | 1.2 | 0.011 * | 0.2, 2.0 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutta, E.; Hubbart, J.A. Seasonal Lifting Condensation Level Trends: Implications of Warming and Reforestation in Appalachia’s Deciduous Forest. Atmosphere 2023, 14, 98. https://doi.org/10.3390/atmos14010098
Kutta E, Hubbart JA. Seasonal Lifting Condensation Level Trends: Implications of Warming and Reforestation in Appalachia’s Deciduous Forest. Atmosphere. 2023; 14(1):98. https://doi.org/10.3390/atmos14010098
Chicago/Turabian StyleKutta, Evan, and Jason A. Hubbart. 2023. "Seasonal Lifting Condensation Level Trends: Implications of Warming and Reforestation in Appalachia’s Deciduous Forest" Atmosphere 14, no. 1: 98. https://doi.org/10.3390/atmos14010098
APA StyleKutta, E., & Hubbart, J. A. (2023). Seasonal Lifting Condensation Level Trends: Implications of Warming and Reforestation in Appalachia’s Deciduous Forest. Atmosphere, 14(1), 98. https://doi.org/10.3390/atmos14010098