The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring Stations in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Monitoring Stations
2.2. Air Monitoring Data
2.3. Temporal Variables’ Transformation
2.4. Data Preparation
2.5. Regression Models (Design)
- Feed the network data from the training data set.
- Calculate the prediction (network outputs).
- Calculate of the difference between the predicted and actual values of the output according to the data, using the error function.
- Repeat steps 1 and 2 until all input—output pairs from the training data set are exhausted.
- Use a learning algorithm to correct the neuron weights to obtain a smaller prediction error.
- Input all cases from the test data to the network input, obtain the prediction, compare it with the appropriate values of the data outputs, and calculate the network error.
- Compare the network error received with the error received in the previous cycle. If the error decreased, learning is continued in the next cycle, otherwise the process was stopped.
2.6. Assessment of the Approximation Error
2.7. Verification of Models
3. Results
3.1. Annual and Diurnal Courses of PM2.5 and PM10 Concentrations
3.2. Preliminary Analysis of Correlations
3.3. Results of Modeling PM2.5 Concentrations
3.4. Verification of Models
4. Discussion and Conclusions
- In order to obtain a low PM2.5 prediction error using the MLP models, it is enough to use the date and time in numerical form and the PM10 concentration as explanatory variables.
- Including more explanatory variables slightly increases the accuracy of the MLP regression model.
- Neural regression models trained on archival data can be successfully used to model current PM2.5 concentrations.
- The level of prediction error may be influenced by various factors: correlation coefficient between PM10 and PM2.5 concentrations, levels of the aerosol concentrations, their variability, and the share of the PM2.5 concentration in the PM10 concentration. The strength of the correlation between PM10 and PM2.5 concentrations is not a dominant factor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peterson, B.S.; Rauh, V.A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Walsh, K.; Miller, R.L.; Arias, F.; Semanek, D.; et al. Effects of Prenatal Exposure to Air Pollutants (Polycyclic Aromatic Hydrocarbons) on the Development of Brain White Matter, Cognition, and Behavior in Later Childhood. JAMA Psychiatry 2015, 72, 531–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Manley, J.; Radoias, V. Air Pollution and Long Term Mental Health. Atmosphere 2020, 11, 1355. [Google Scholar] [CrossRef]
- Widziewicz, Y.; Rogula-Kozlowska, W.; Loska, K.; Kociszewska, K.; Majewski, G. Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland. Biomed. Environ. Sci. 2018, 31, 23–36. [Google Scholar] [CrossRef]
- Trojanowska, M.; Świetlik, R. Heavy metals cadmium, nickel and arsenic environmental inhalation hazard of residents of Polish cities. Environ. Med. 2012, 15, 33–41. [Google Scholar]
- Gurjar, B.R.; Molina, L.T.; Ojha, C.S.P. Air Pollution: Health and Environmental Impacts; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Maesano, I. The Air of Europe: Where Are We Going? Eur. Respir. Rev. 2017, 26, 170024. [Google Scholar] [CrossRef] [Green Version]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of Air Pollution on Asthma Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef]
- Chang, T.; Zivin, J.G.; Gross, T.; Neidell, M. Particulate Pollution and the Productivity of Pear Packers. Am. Econ. J. Econ. Policy 2016, 8, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Graff-Zivin, J.; Neidell, M. The Impact of Pollution on Worker Productivity. Am. Econ. Rev. 2012, 102, 3652–3673. [Google Scholar] [CrossRef] [Green Version]
- Hanna, R.; Oliva, P. The Effect of Pollution on Labor Supply: Evidence from a Natural Experiment in Mexico City. J. Public Econ. 2015, 122, 68–79. [Google Scholar] [CrossRef]
- Aragon, F.; Miranda, J.; Oliva, P. Particulate Matter and Labor Supply: The Role of Caregiving and Non-linearities. J. Environ. Econ. Manag. 2017, 86, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Pandya, S.; Gadekallu, T.R.; Maddikunta, P.K.R.; Sharma, R. A Study of the Impacts of Air Pollution on the Agricultural Community and Yield Crops (Indian Context). Sustainability 2022, 14, 13098. [Google Scholar] [CrossRef]
- Wei, W.; Wang, Z. Impact of Industrial Air Pollution on Agricultural Production. Atmosphere 2021, 12, 639. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe-2020 Report. No. 12/2018; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- World Health Organization. 7 Million Premature Deaths Annually Linked to Air Pollution. Available online: www.who.int/mediacentre/news/releases/2014/air-pollution/en (accessed on 29 April 2021).
- Vallero, D.A. Fundamentals of Air Pollution, 4th ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- EC-European Commission. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. Eur. Union L 2005, 23, 3–16. [Google Scholar]
- Hammitt, J.K.; Morfeld, P.; Tuomisto, J.T.; Erren, T.C. Premature Deaths, Statistical Lives, and Years of Life Lost: Identification, Quantification, and Valuation of Mortality Risks. Risk Anal. 2020, 40, 674–695. [Google Scholar] [CrossRef]
- Plaia, A.; Bondi, A.L. Single Imputation Method of Missing Values in Environmental Pollution Data Sets. Atmos. Environ. 2006, 40, 7316–7330. [Google Scholar] [CrossRef]
- Gentili, S.; Magnaterra, L.; Passerini, G. Handling Missing Data: Applications to Environmental Analysis; Latini, G., Passerini, G., Eds.; Wit Press: Southampton, UK, 2004. [Google Scholar]
- Hoffman, S. Approximation of Imission Level at Air Monitoring Stations by Means of Autonomous Neural Models. Environ. Prot. Eng. 2012, 38, 109–119. [Google Scholar] [CrossRef]
- Lin, W.C.; Tsai, C.F. Missing value imputation: A review and analysis of the literature (2006–2017). Artif. Intell. Rev. 2020, 53, 1487–1509. [Google Scholar] [CrossRef]
- Milionis, A.E.; Davies, T.D. Regression and Stochastic Models for Air Pollution-I. Review, Comments and Suggestions. Atmos. Environ. 1994, 28, 2801–2810. [Google Scholar] [CrossRef]
- Zhang, B.; Rong, Y.; Yong, R.; Qin, D.; Li, M.; Zou, G.; Pan, J. Deep learning for air pollutant concentration prediction: A review. Atmos. Environ. 2022, 290, 119347. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial Neural Networks (the Multilayer Perceptron)-A Review of Applications in the Atmospheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Dorling, S.R.; Gardner, M.W. Statistical Surface Ozone Models: An Improved Methodology to Account for Non-linear Behaviour. Atmos. Environ. 2000, 34, 21–34. [Google Scholar]
- Karppinen, A.; Kukkonen, J.; Elolähde, T.; Konttinen, M.; Koskentalo, T.; Rantakrans, E. A Modelling System for Predicting Urban Air Pollution: Comparison of Model Predictions with the Data of an Urban Measurement Network in Helsinki. Atmos. Environ. 2000, 34, 3735–3743. [Google Scholar] [CrossRef]
- Nagendra, S.S.M.; Khare, M. Modelling Urban Air Quality Using Artificial Neural Network. Clean Technol. Environ. Policy 2005, 7, 116–126. [Google Scholar] [CrossRef]
- Maleki, H.; Sorooshian, A.; Goudarzi, G.; Baboli, Z.; Birgani, Y.T.; Rahmati, M. Air pollution prediction by using an artificial neural network model. Clean Technol. Environ. Policy 2019, 21, 1341–1352. [Google Scholar] [CrossRef]
- Fallahizadeh, S.; Kermani, M.; Esrafili, A.; Asadgol, Z.; Gholami, M. The effects of meteorological parameters on PM10: Health impacts assessment using AirQ+ model and prediction by an artificial neural network (ANN). Urban Clim. 2021, 38, 100905. [Google Scholar] [CrossRef]
- Shams, S.R.; Jahani, A.; Kalantary, S.; Moeinaddini, M.; Khorasani, N. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Clim. 2021, 37, 100837. [Google Scholar] [CrossRef]
- Hoffman, S. Assessment of Prediction Accuracy in Autonomous Air Quality Models. Desalination Water Treat. 2015, 57, 1322–1326. [Google Scholar] [CrossRef]
- Hoffman, S. Estimation of Prediction Error in Regression Air Quality Models. Energies 2021, 14, 7387. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, J.; He, Z.; Li, H.; Yang, Y.; Zhang, R. Combining forward with recurrent neural networks for hourly air quality prediction in Northwest of China. Environ. Sci. Pollut. Res. 2020, 27, 28931–28948. [Google Scholar] [CrossRef]
- Rijal, N.; Gutta, R.T.; Cao, T.; Lin, J.; Bo, Q.; Zhang, J. Ensemble of Deep Neural Networks for Estimating Particulate Matter from Images. In Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 733–738. [Google Scholar] [CrossRef]
- Chae, S.; Shin, J.; Kwon, S.; Lee, S.; Kang, S.; Lee, D. PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network. Sci. Rep. 2021, 11, 11952. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, S. Long-term trends of air pollutant concentrations in Poland. E3S Web Conf. 2019, 116, 00027. [Google Scholar] [CrossRef]
- Duan, J.; Chen, Y.; Fang, W.; Su, Z. Characteristics and Relationship of PM, PM10, PM2.5 Concentration in a Polluted City in Northern China. Procedia Eng. 2015, 102, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Colangeli, C.; Palermi, S.; Bianco, S.; Aruffo, E.; Chiacchiaretta, P.; Di Carlo, P. The Relationship between PM2.5 and PM10 in Central Italy: Application of Machine Learning Model to Segregate Anthropogenic from Natural Sources. Atmosphere 2022, 13, 484. [Google Scholar] [CrossRef]
- Chief Inspectorate of Environmental Protection (Poland)–Measurement Data Bank. Available online: https://powietrze.gios.gov.pl/pjp/archives (accessed on 25 August 2022).
- Fletcher, R. Practical Methods of Optimization, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Broyden, C.G. The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Its Appl. 1970, 6, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R. A New Approach to Variable Metric Algorithms. Comput. J. 1970, 13, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, D. A Family of Variable Metric Updates Derived by Variational Means. Math. Comput. 1970, 24, 23–26. [Google Scholar] [CrossRef]
- Shanno, D.F. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 1970, 24, 647–656. [Google Scholar] [CrossRef]
- Statistica. Electronic Textbook, 1984–2017, available in the STATISTICA 13.3 program. Available online: https://statistica.software.informer.com/13.3/ (accessed on 19 November 2022).
- Hoffman, S.; Filak, M.; Jasiński, R. Air Quality Modeling with the Use of Regression Neural Networks. Int. J. Environ. Res. Public Health 2022, 19, 16494. [Google Scholar] [CrossRef]
Air Monitoring Station | Address | International Code | Geographical Coordinates, WGS84 | Station Type | Area Type |
---|---|---|---|---|---|
Jelenia Gora | 6 Oginskiego Str. | PL0585A | Φ 50.913433 λ 15.765608 | background | city |
Lublin | 13. Obywatelska Str. | PL0507A | Φ 51.259431 λ 22.569133 | background | city |
Plock | 28 Mikolaja Reja Str. | PL0136A | Φ 52.550938 λ 19.709791 | background | city |
Radom | 1 Tochtermana Str. | PL0138A | Φ 51.399084 λ 21.147474 | background | city |
Kedzierzyn-Kozle | 5 Boleslawa Smialego Str. | PL0218A | Φ 50.349608 λ 18.236575 | background | city |
Olsztyn | 16 Puszkina Str. | PL0175A | Φ 53.789233 λ 20.486075 | background | city |
Completeness of the Annual Series | |||||||||
---|---|---|---|---|---|---|---|---|---|
Air Monitoring Station | Total Number of Observations (Cases) | 2015 % | 2016 % | 2017 % | 2018 % | 2019 % | 2020 % | 2021 % | 2015–2021 1 % |
Jelenia Gora | 56,362 | 85.1 | 90.9 | 86.8 | 94.6 | 93.6 | 95.6 | 96.2 | 91.8 |
Lublin | 39,336 | - | - | 88.9 | 91.7 | 88.4 | 92.5 | 87.2 | 89.8 |
Plock | 51,169 | - | 98.6 | 99.2 | 90.9 | 98.8 | 98.4 | 97.7 | 97.3 |
Radom | 57,568 | 92.1 | 89.3 | 96.1 | 97.6 | 95.8 | 98.0 | 87.8 | 93.8 |
Kedzierzyn-Kozle | 23,838 | - | 88.9 | - | 90.8 | - | - | 92.1 | 90.6 |
Olsztyn | 41,126 | - | - | 87.2 | 91.5 | 96.7 | 96.3 | 97.5 | 93.8 |
Air Monitoring Station | Statistical Parameter | CO mg/m3 | SO2 µg/m3 | PM10 µg/m3 | PM2.5 µg/m3 | O3 µg/m3 | NOx µg/m3 |
---|---|---|---|---|---|---|---|
Jelenia Gora | Minimum value | 0.012 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 |
Maximum value | 4.169 | 83.3 | 407.7 | 375.9 | 194.3 | 426.3 | |
Mean | 0.399 | 5.0 | 26.8 | 21.0 | 52.8 | 15.9 | |
Standard deviation (SD) | 0.275 | 4.6 | 28.8 | 26.6 | 33.4 | 17.7 | |
Lublin | Minimum value | 0.000 | 0.0 | 0.3 | 0.2 | 0.0 | 0.0 |
Maximum value | 5.323 | 56.9 | 496.0 | 438.0 | 176.1 | 766.7 | |
Mean | 0.354 | 4.8 | 28.7 | 21.7 | 45.7 | 29.7 | |
Standard deviation (SD) | 0.276 | 3.1 | 23.6 | 20.8 | 27.7 | 34.6 | |
Plock | Minimum value | 0.110 | 0.0 | 0.7 | 0.1 | 0.3 | 0.3 |
Maximum value | 3.313 | 322.8 | 346.9 | 167.6 | 177.3 | 838.1 | |
Mean | 0.354 | 3.6 | 27.0 | 18.9 | 49.3 | 20.1 | |
Standard deviation (SD) | 0.160 | 6.6 | 18.7 | 15.1 | 25.8 | 22.0 | |
Radom | Minimum value | 0.090 | 0.0 | 1.2 | 0.1 | 0.1 | 0.8 |
Maximum value | 6.246 | 76.4 | 449.3 | 302.3 | 174.3 | 947.8 | |
Mean | 0.418 | 3.0 | 32.6 | 23.7 | 46.0 | 31.6 | |
Standard deviation (SD) | 0.269 | 3.8 | 25.9 | 21.2 | 27.7 | 34.5 | |
Kedzierzyn -Kozle | Minimum value | 0.064 | 0.2 | 0.8 | 0.2 | 0.0 | 0.4 |
Maximum value | 2.561 | 56.1 | 296.5 | 264.1 | 175.2 | 389.0 | |
Mean | 0.387 | 6.2 | 32.3 | 24.5 | 45.7 | 23.5 | |
Standard deviation (SD) | 0.248 | 4.7 | 26.6 | 23.5 | 32.1 | 24.3 | |
Olsztyn | Minimum value | 0.061 | 0.0 | 0.7 | 0.5 | 0.0 | 0.0 |
Maximum value | 3.102 | 55.7 | 251.0 | 138.4 | 144.0 | 411.3 | |
Mean | 0.332 | 4.5 | 21.4 | 15.9 | 48.9 | 17.8 | |
Standard deviation (SD) | 0.156 | 3.2 | 15.9 | 12.7 | 25.7 | 21.1 |
Air Monitoring Station | CO | SO2 | PM10 | PM2.5 | O3 | NOx | |
---|---|---|---|---|---|---|---|
Jelenia Gora | CO | 1.000 | |||||
SO2 | 0.669 | 1.000 | |||||
PM10 | 0.902 | 0.668 | 1.000 | ||||
PM2.5 | 0.926 | 0.682 | 0.978 | 1.000 | |||
O3 | −0.484 | −0.258 | −0.375 | −0.434 | 1.000 | ||
NOx | 0.743 | 0.570 | 0.711 | 0.708 | −0.516 | 1.000 | |
Lublin | CO | 1.000 | |||||
SO2 | 0.326 | 1.000 | |||||
PM10 | 0.772 | 0.398 | 1.000 | ||||
PM2.5 | 0.788 | 0.404 | 0.947 | 1.000 | |||
O3 | −0.446 | −0.145 | −0.325 | −0.440 | 1.000 | ||
NOx | 0.750 | 0.220 | 0.585 | 0.547 | −0.434 | 1.000 | |
Plock | CO | 1.000 | |||||
SO2 | 0.118 | 1.000 | |||||
PM10 | 0.768 | 0.145 | 1.000 | ||||
PM2.5 | 0.827 | 0.148 | 0.923 | 1.000 | |||
O3 | −0.520 | 0.000 | −0.361 | −0.501 | 1.000 | ||
NOx | 0.738 | 0.083 | 0.497 | 0.483 | −0.424 | 1.000 | |
Radom | CO | 1.000 | |||||
SO2 | 0.546 | 1.000 | |||||
PM10 | 0.863 | 0.636 | 1.000 | ||||
PM2.5 | 0.885 | 0.652 | 0.945 | 1.000 | |||
O3 | −0.485 | −0.213 | −0.431 | −0.512 | 1.000 | ||
NOx | 0.809 | 0.354 | 0.664 | 0.631 | −0.455 | 1.000 | |
Kedzierzyn-Kozle | CO | 1.000 | |||||
SO2 | 0.503 | 1.000 | |||||
PM10 | 0.818 | 0.534 | 1.000 | ||||
PM2.5 | 0.839 | 0.529 | 0.967 | 1.000 | |||
O3 | −0.531 | −0.152 | −0.406 | −0.463 | 1.000 | ||
NOx | 0.711 | 0.309 | 0.621 | 0.608 | −0.548 | 1.000 | |
Olsztyn | CO | 1.000 | |||||
SO2 | 0.141 | 1.000 | |||||
PM10 | 0.641 | 0.202 | 1.000 | ||||
PM2.5 | 0.759 | 0.197 | 0.895 | 1.000 | |||
O3 | −0.581 | −0.071 | −0.295 | −0.479 | 1.000 | ||
NOx | 0.744 | 0.141 | 0.565 | 0.561 | −0.522 | 1.000 |
Air Monitoring Station | Regression Model | Explanatory Variable (Predictors) | MAE µg/m3 | RMSE µg/m3 |
---|---|---|---|---|
Jelenia Gora | LINEAR | PM10 | 3.92 | 5.53 |
MLP 2-10-1 | D, H, | 13.94 | 24.19 | |
MLP 3-10-1 | D, H, PM10, | 3.25 | 4.72 | |
MLP 4-10-1 | D, H, PM10, CO | 2.99 | 4.18 | |
MLP 7-10-1 | D, H, PM10, CO, SO2, O3, NOx | 2.91 | 4.09 | |
Lublin | LINEAR | PM10 | 4.68 | 6.69 |
MLP 2-10-1 | D, H, | 11.90 | 20.12 | |
MLP 3-10-1 | D, H, PM10, | 4.04 | 5.88 | |
MLP 4-10-1 | D, H, PM10, CO | 4.01 | 5.74 | |
MLP 7-10-1 | D, H, PM10, CO, SO2, O3, NOx | 3.61 | 5.30 | |
Plock | LINEAR | PM10 | 3.70 | 5.78 |
MLP 2-10-1 | D, H, | 8.67 | 12.88 | |
MLP 3-10-1 | D, H, PM10, | 2.68 | 4.06 | |
MLP 4-10-1 | D, H, PM10, CO | 2.46 | 3.66 | |
MLP 7-10-1 | D, H, PM10, CO, SO2, O3, NOx | 2.23 | 3.36 | |
Radom | LINEAR | PM10 | 4.40 | 6.94 |
MLP 2-10-1 | D, H, | 11.23 | 18.10 | |
MLP 3-10-1 | D, H, PM10, | 3.36 | 5.68 | |
MLP 4-10-1 | D, H, PM10, CO | 3.16 | 5.01 | |
MLP 7-10-1 | D, H, PM10, CO, SO2, O3, NOx | 2.80 | 4.39 | |
Kedzierzyn-Kozle | LINEAR | PM10 | 4.04 | 5.98 |
MLP 2-10-1 | D, H, | 13.66 | 21.05 | |
MLP 3-10-1 | D, H, PM10, | 3.68 | 5.51 | |
MLP 4-10-1 | D, H, PM10, CO | 3.60 | 5.30 | |
MLP 7-10-1 | D, H, PM10, CO, SO2, O3, NOx | 3.22 | 4.73 | |
Olsztyn | LINEAR | PM10 | 3.42 | 5.66 |
MLP 2-10-1 | D, H, | 7.76 | 11.21 | |
MLP 3-10-1 | D, H, PM10, | 2.04 | 3.29 | |
MLP 4-10-1 | D, H, PM10, CO | 2.00 | 3.21 | |
MLP 7-10-1 | D, H, PM10, CO, SO2, O3, NOx | 1.78 | 2.88 |
Air Monitoring Station | Extreme Concentration Threshold | Number of Cases | PM2.5/PM10 Ratio % | MAE µg/m3 | RMSE µg/m3 |
---|---|---|---|---|---|
Jelenia Gora | ≤1.0 | 314 | 34.2 | 3.81 | 4.39 |
≥100.0 | 1346 | 91.6 | 6.35 | 7.97 | |
Lublin | ≤1.0 | 55 | 25.2 | 4.64 | 5.12 |
≥100.0 | 440 | 89.6 | 8.41 | 11.65 | |
Plock | ≤1.0 | 46 | 30.5 | 2.15 | 2.17 |
≥100.0 | 155 | 80.6 | 6.33 | 8.54 | |
Radom | ≤1.0 | 33 | 18.7 | 1.94 | 1.98 |
≥100.0 | 729 | 84.9 | 12.47 | 15.92 | |
Kedzierzyn-Kozle | ≤1.0 | 48 | 30.9 | 3.53 | 3.89 |
≥100.0 | 428 | 88.8 | 8.11 | 10.23 | |
Olsztyn | ≤1.0 | 14 | 63.2 | 1.32 | 2.51 |
≥100.0 | 24 | 90.0 | 10.88 | 14.13 |
Air Monitoring Station | MAE µg/m3 | RMSE µg/m3 |
---|---|---|
Jelenia Gora | 3.67 | 8.12 |
Lublin | 4.36 | 7.94 |
Radom | 3.16 | 5.62 |
Kedzierzyn-Kozle | 4.08 | 7.15 |
Olsztyn | 2.21 | 3.41 |
Air Monitoring Station | PM10, µg/m3 | PM2.5, µg/m3 | PM2.5/PM10 Ratio, % | r-Pearson PM2.5/PM10 | RMSE, µg/m3 | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | MLP 3-10-1 | MLP 7-10-1 | |||
Jelenia Gora | 26.8 | 28.8 | 21.0 | 26.6 | 73.7 | 0.978 | 4.72 | 4.09 |
Lublin | 28.7 | 23.6 | 21.7 | 20.8 | 73.7 | 0.947 | 5.88 | 5.30 |
Plock | 27.0 | 18.7 | 18.9 | 15.1 | 68.1 | 0.923 | 4.06 | 3.36 |
Radom | 32.6 | 25.9 | 23.7 | 21.2 | 69.9 | 0.945 | 5.68 | 4.39 |
Kedzierzyn-Kozle | 32.3 | 26.6 | 24.5 | 23.5 | 72.3 | 0.967 | 5.51 | 4.73 |
Olsztyn | 21.4 | 15.9 | 15.9 | 12.7 | 74.6 | 0.895 | 3.29 | 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman, S.; Jasiński, R. The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring Stations in Poland. Atmosphere 2023, 14, 96. https://doi.org/10.3390/atmos14010096
Hoffman S, Jasiński R. The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring Stations in Poland. Atmosphere. 2023; 14(1):96. https://doi.org/10.3390/atmos14010096
Chicago/Turabian StyleHoffman, Szymon, and Rafał Jasiński. 2023. "The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring Stations in Poland" Atmosphere 14, no. 1: 96. https://doi.org/10.3390/atmos14010096
APA StyleHoffman, S., & Jasiński, R. (2023). The Use of Multilayer Perceptrons to Model PM2.5 Concentrations at Air Monitoring Stations in Poland. Atmosphere, 14(1), 96. https://doi.org/10.3390/atmos14010096