Study on the Piecewise Inverse Model of Accumulated Temperature Based on Skewness-Distribution Parameters of Canopy Images in Pepper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Meteorological Data Acquisition
2.3. Pepper Image Collection in the Greenhouse
2.4. Extraction of Canopy Leaf Color Gradation Skewed-Distribution (CGSD) Characteristics of Pepper Image
2.5. Data Analysis
2.5.1. Correlation Analysis of 20 CGSD Parameters to Meteorological Factors
2.5.2. Construction of Response and Inversion Liner Models
2.5.3. Construction of Curve Models and Determination of Stationary Point of Models
2.5.4. Construction of Piecewise Models
2.5.5. Accuracy Analysis of Models
3. Results
3.1. Skew Analysis of the Distribution of Canopy Leaf Color Gradation of the RGB Images
3.2. Correlation Analysis, Multiple Linear Relationships of Microclimate Factors in a Glasshouse, and Population Canopy CGSD Parameters
3.3. Construction of the Canopy Leaf Color Response Regression Model
3.4. Construction Inversion Models of Accumulated Temperature Based on CSCD Parameters and Analysis of Inversion Accuracy of the Models
3.5. Outlier Analysis
3.6. Determination of Point of Demarcation of Piecewise Function Model
3.7. Determination and Prediction of Piecewise Function Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, H.L.; Zhou, G.S.; He, Q.J.; Zhou, L.; Ji, Y.H.; Zhou, M.Z. Environmental explanation of maize specific leaf area under varying water stress regimes. Environ. Exp. Bot. 2020, 171, 103932. [Google Scholar] [CrossRef]
- Nawaz, R.; Abbasi, N.A.; Hafiz, I.A.; Khalid, A. Impact of climate variables on growth and development of Kinnow fruit (Citrus nobilis Lour × Citrus deliciosa Tenora) grown at different ecological zones under climate change scenario. Sci. Hortic. 2020, 260, 108868. [Google Scholar] [CrossRef]
- Hu, W.; Snider, J.L.; Wang, H.M.; Zhou, Z.G.; Chastain, D.R.; Whitaker, J.; Perry, C.D.; Bourland, F.M. Water-induced variation in yield and quality can be explained by altered yield component contributions in field-grown cotton. Field Crops Res. 2018, 224, 139–147. [Google Scholar] [CrossRef]
- Ayele, A.G.; Dever, J.K.; Kelly, C.M.; Sheehan, M.; Morgan, V.; Payton, P. Responses of upland cotton (Gossypium hirsutum L.) lines to irrigated and rainfed conditions of texas high plains. Plants 2020, 9, 1598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mu, Q.Z.; Huang, J.X. Assessing the remotely sensed drought severity index for agricultural drought monitoring and impact analysis in North China. Ecol. Indic. 2016, 63, 296–309. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007.
- Poorter, H.; Fiorani, F.; Pieruschka, R.; Wojciechowski, T.; Van der Putten, W.H.; Kleyer, M.; Schurr, U.; Postma, J.A. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 2016, 212, 838–855. [Google Scholar] [CrossRef]
- Chen, D.J.; Neumann, K.; Friedel, S.; Kilian, B.; Chen, M.; Altmann, T.; Klukas, C. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 2014, 26, 4636–4655. [Google Scholar] [CrossRef] [Green Version]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Grosskinsky, D.K.; Syaifullah, S.J.; Roitsch, T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J. Exp. Bot. 2018, 69, 825–844. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Q.; Hu, H.B.; Yu, H.; Yang, X.; Yang, H.L.; Ruan, C.X.; Wang, Y.; Tang, J.W. Relationship between leaf physiological traits and canopy color indices during the spring leaf-expansion period in an oak forest. Ecosphere 2015, 259, 1–9. [Google Scholar]
- Vasseur, F.; Bresson, J.; Wang, G.; Schwab, R.; Weigel, D. Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods 2018, 14, 63. [Google Scholar] [CrossRef]
- Barker, J.; Zhang, N.Q.; Sharon, J.; Steeves, R.; Wang, X.; Wei, Y.; Poland, J. Development of a field-based high-throughput mobile phenotyping platform. Comput. Electron. Agric. 2016, 122, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.P.; Ibaraki, Y.; Gupta, S.D. Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell Tiss. Org. 2010, 100, 183–188. [Google Scholar] [CrossRef]
- Adamsen, F.J.; Pinter, P.J.; Barnes, E.M.; LaMorte, R.L.; Wall, G.W.; Leavitt, S.W.; Kimball, B.A. Measuring wheat senescence with a digital camera. Crop Sci. 1999, 39, 719–724. [Google Scholar] [CrossRef]
- Cai, H.C.; Cui, H.X.; Song, W.T.; Gao, L.H. Preliminary study on photosynthetic pigment content and colour feature of cucumber initial blooms. Trans. CSAE 2006, 22, 34–38. [Google Scholar]
- Ali, M.M.; Al-Ani, A.; Eamus, D.; Tan, D.K.Y.A. New image processing based technique to determine chlorophyll in plants. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 1323–1328. [Google Scholar]
- Han, W.T.; Sun, Y.; Xu, T.F.; Chen, X.W.; Su, K.O. Detecting maize leaf water status by using digital RGB images. Int. J. Agric. Biol. Eng. 2014, 7, 45–53. [Google Scholar]
- Barbedo, J.G.A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 2019, 162, 482–492. [Google Scholar] [CrossRef]
- Vibhute, A.; Bodhe, S.K.; More, B.M. Wavelength based nitrogen estimation of grapes using RGB color images. World Res. J. Eng. Techol. 2014, 3, 38–40. [Google Scholar]
- Chaerle, L.; Hagenbeek, D.; Vanrobaeys, X.; Van Der Straeten, D. Early detection of nutrient and biotic stress in Phaseolus vulgaris. Int. J. Remote Sens. 2007, 28, 3479–3492. [Google Scholar] [CrossRef]
- Bresson, J.; Bieker, S.; Riester, L.; Doll, J.; Zentgraf, U. A guideline for leaf senescence analyses: From quantification to physiological and molecular investigations. J. Exp. Bot. 2018, 69, 769–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauw, P.; Coppens, F.; Korte, A.; Herman, D.; Slabbinck, B.; Dhondt, S.; Van Daele, T.; De Milde, L.; Vermeersch, M.; Maleux, K.; et al. Leaf growth response to mild drought: Natural variation in Arabidopsis sheds light on trait architecture. Plant Cell 2016, 28, 2417–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiv, M.M. Effects of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species. Sci. Hortic. 2000, 86, 299–310. [Google Scholar]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, A.B. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Glob. Chang. Biol. 2000, 6, 371–382. [Google Scholar]
- Jeon, M.-W.; Ali, M.B.; Hahn, E.-J.; Paek, K.-Y. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environ. Exp. Bot. 2006, 55, 183–194. [Google Scholar] [CrossRef]
- Urban, J.; Ingwers, M.W.; Mcguire, M.A.; Teskey, R.O. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. J. Exp. Bot. 2017, 68, 1757–1767. [Google Scholar] [CrossRef]
- Wang, B.; Cai, W.W.; Li, J.L.; Wan, Y.F.; Li, Y.; Guo, C.; Wilkes, A.; You, S.C.; Qin, X.B.; Gao, Q.Z.; et al. Leaf photosynthesis and stomatal conductance acclimate to elevated [CO2] and temperature thus increasing dry matter productivity in a double rice cropping system. Field Crops Res 2020, 248, 107735. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D.F. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Chen, Z.M.; Wang, F.Z.; Zhang, P.; Ke, D.C.; Zhu, Y.; Cao, W.X.; Jiang, H.D. Skewed distribution of leaf color RGB model and application of skewed parameters in leaf color description model. Plant Methods 2020, 16, 23. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Z.M.; Ma, S.D.; Yin, D.; Jiang, H.D. Prediction of soybean yield by using RGB model with skew distribution pattern of canopy leaf color. Trans. CSAE 2021, 37, 120–126. [Google Scholar]
- Zhang, P.; Chen, Z.M.; Wang, F.Z.; Wang, R.; Bao, T.T.; Xie, X.P.; An, Z.Y.; Jian, X.X.; Liu, C.W. Response of Population Canopy Color Gradation Skewed Distribution Parameters of the RGB Model to Micrometeorology Environment in Begonia Fimbristipula Hance. Atmosphere 2022, 13, 890. [Google Scholar] [CrossRef]
- Gous, P.W.; Meder, R.; Fox, G.P. Near Infrared Spectral Assessment of Stay-Green Barley Genotypes under Heat Stress. J. Near Infrared Spectrosc. 2015, 23, 145–153. [Google Scholar] [CrossRef]
- Cai, J.; Okamoto, M.; Atieno, J.; Sutton, T.; Li, Y.; Miklavcic, S.J. Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications. PLoS ONE 2016, 11, e0157102. [Google Scholar] [CrossRef] [Green Version]
- Schmalko, M.E.; Scipioni, P.G.; Ferreyra, D. Effect of Water Activity and Temperature in Color and Chlorophylls Changes in Yerba Mate Leaves. Int. J. Food Prop. 2005, 8, 313–322. [Google Scholar] [CrossRef]
Models | R-Square | Adjusted R-Square | RMSE | F Value | Significance F | |
---|---|---|---|---|---|---|
RMean | Y1 = −1137.831 + 0.019 AT + 2.774 Pmax − 1.629 Pmin | 0.508 | 0.493 | 10.672 | 33.374 | 0.000 |
RMedian | Y2 = −1186.280 + 0.018 AT + 2.960 Pmax − 1.769 Pmin | 0.458 | 0.441 | 11.246 | 27.340 | 0.000 |
RMode | Y3 = −1054.301 + 2.880 Pmax + 0.016 Cmax − 1.821 Pmin | 0.172 | 0.146 | 17.325 | 6.710 | 0.000 |
RSkewness | Y4 = −0.174 − 0.002 Cmin + 0.029 RHm − 0.030 em | 0.193 | 0.168 | 0.421 | 7.717 | 0.000 |
RKurtosis | Y5 = 120.664 − 0.002 AT − 0.113 Pmax | 0.280 | 0.265 | 1.901 | 19.026 | 0.000 |
GMean | Y6 = −1030.263 + 0.015 AT + 2.477 Pmax − 1.399 Pmin + 0.014 Cm | 0.458 | 0.436 | 10.805 | 20.320 | 0.000 |
GMedian | Y7 = −1174.908 + 0.015 AT + 2.840 Pmax − 1.620 Pmin + 0.017 Cm | 0.420 | 0.396 | 12.335 | 17.367 | 0.000 |
GMode | Y8 = −1397.657 + 0.024 AT + 3.486 Pmax − 2.043 Pmin | 0.357 | 0.337 | 18.080 | 17.932 | 0.000 |
GSkewness | Y9 = 22.809 − 0.069 Pmax + 0.047 Pmin − 0.001 Cmin | 0.264 | 0.241 | 0.299 | 11.601 | 0.000 |
GKurtosis | Y10 = 22.211 + 0.0004 AT − 0.032 em − 0.018 Pmin | 0.627 | 0.616 | 0.350 | 54.394 | 0.000 |
BMean | Y11 = −783.168 + 0.025 AT + 0.785 Pmax + 0.007 Cmax | 0.884 | 0.880 | 6.752 | 245.771 | 0.000 |
BMedian | Y12 = −809.815 + 0.026 AT + 0.807 Pmax + 0.007 Cmax | 0.878 | 0.874 | 7.186 | 232.068 | 0.000 |
BMode | Y13 = −14.306 + 1.457 Tmin | 0.078 | 0.069 | 17.553 | 8.370 | 0.000 |
BSkewness | Y14 = 1.500 − 0.001 AT | 0.565 | 0.560 | 0.395 | 128.410 | 0.000 |
BKurtosis | Y15 = 20.585 − 0.001 AT − 0.539 Tm − 0.005 Cmin | 0.430 | 0.412 | 2.357 | 24.352 | 0.000 |
YMean | Y16 = −965.515 + 0.018 AT + 2.523 Pmax − 1.525 Pmin | 0.524 | 0.509 | 10.168 | 35.587 | 0.000 |
YMedian | Y17 = −1099.405 + 0.017 AT + 2.301 Pmax − 1.155 Pmin + 0.032 Cm − 0.384 RHm | 0.522 | 0.497 | 10.981 | 20.775 | 0.000 |
YMode | Y18 = 74.780 + 0.024 Cmax + 0.017 AT − 2.193 TDm | 0.286 | 0.264 | 19.612 | 12.958 | 0.000 |
YSkewness | Y19 = 21.832 − 0.063 Pmax − 0.001 Cmin + 0.042 Pmin | 0.212 | 0.187 | 0.341 | 8.692 | 0.000 |
YKurtosis | Y20 = 5.158 − 0.001 AT − 0.049 em | 0.465 | 0.454 | 0.765 | 42.565 | 0.000 |
Index | Modeling Group (Group 1) | Group 2 from Same Planting Row | Group 3 from Different Planting Row | Group 4 from Different Planting Row |
---|---|---|---|---|
Sample number | 101 | 101 | 101 | 101 |
Outlier number | 7 | 9 | 8 | 11 |
Outlier ratio | 6.93% | 8.91% | 7.92% | 10.89% |
Inversion accuracy | 88.62% | 87.87% | 80.37% | 76.78% |
Models | R-Square | Adjusted R-Square | RMSE | F Value | Significance F |
---|---|---|---|---|---|
BMean Y22 = 0.0000070982 AT2 + 0.0038009585 AT + 23.89 | 0.897 | 0.895 | 6.326 | 426.329 | 0.000 |
BMeanY23 = −0.0000000132 AT 3 + 0.0000604278 AT 2 − 0.0534623558 AT + 36.65 | 0.962 | 0.961 | 3.847 | 824.278 | 0.000 |
GSkewnessY24 = −0.0000003471 AT 2 + 0.0010537988 AT − 0.65 | 0.391 | 0.378 | 0.270 | 31.433 | 0.000 |
GSkewnessY25 = 0.0000000004 AT 3 − 0.0000020405 AT 2 + 0.0028721223 AT − 1.05 | 0.604 | 0.592 | 0.219 | 49.345 | 0.000 |
Model | First Derivative Equation | x1 | x2 |
---|---|---|---|
Y23 | Y23′ = 0.0000000396 AT 2 + 0.0001208546 AT − 0.0534623558 | 536.78 | 2515.14 |
Y25 | Y25′ = 0.0000000012 AT 2 − 0.0000080810 AT + 0.0028721223 | 994.74 | 2406.09 |
Models | R-Square | Adjusted R-Square | RMSE | F Value | Significance F | |
---|---|---|---|---|---|---|
Tt = 1–537 | Y26-1 = 728.655 − 10.377 RMode | 0.849 | 0.841 | 63.410 | 112.130 | 0.000 |
Tt > 537 | Y26-2 = 33.381 + 33.397 BMean − 3.705 RMode | 0.963 | 0.962 | 123.844 | 991.054 | 0.000 |
Tt = 1–995 | Y27-1 = 1978.483 − 14.777 GMode − 175.613 BSkewness | 0.849 | 0.841 | 114.955 | 104.333 | 0.000 |
Tt > 995 | Y27-2 = −790.630 + 43.366 BMean + 562.171 BSkewness − 2.945 RMean | 0.953 | 0.950 | 111.400 | 383.353 | 0.000 |
Modeling Group (Group 1) | Group 2 from Same Planting Row | Group 3 from Different Planting Row | Group 4 from Different Planting Row | Summarized Result | ||
---|---|---|---|---|---|---|
Sample number | 101 | 101 | 101 | 101 | 404 | |
Y21 | Outlier number | 7 | 9 | 8 | 11 | 35 |
Outlier ratio | 6.93% | 8.91% | 7.92% | 10.89% | 8.66% | |
Inversion accuracy | 88.62% | 87.87% | 80.37% | 76.78% | 83.41% | |
Y26 | Outlier number | 2 | 4 | 4 | 2 | 12 |
Outlier ratio | 1.98% | 3.96% | 3.96% | 1.98% | 2.97% | |
Inversion accuracy | 90.48% | 88.63% | 80.24% | 78.33% | 84.42% | |
Y27 | Outlier number | 4 | 4 | 5 | 3 | 16 |
Outlier ratio | 3.96% | 3.96% | 4.95% | 2.97% | 3.96% | |
Inversion accuracy | 88.76% | 85.37% | 86.45% | 84.10% | 86.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Yao, Z.; Wang, R.; Zhang, J.; Zhang, M.; Ren, Y.; Xie, X.; Wang, F.; Wu, H.; Jiang, H. Study on the Piecewise Inverse Model of Accumulated Temperature Based on Skewness-Distribution Parameters of Canopy Images in Pepper. Atmosphere 2023, 14, 7. https://doi.org/10.3390/atmos14010007
Zhang P, Yao Z, Wang R, Zhang J, Zhang M, Ren Y, Xie X, Wang F, Wu H, Jiang H. Study on the Piecewise Inverse Model of Accumulated Temperature Based on Skewness-Distribution Parameters of Canopy Images in Pepper. Atmosphere. 2023; 14(1):7. https://doi.org/10.3390/atmos14010007
Chicago/Turabian StyleZhang, Pei, Zhengyi Yao, Rong Wang, Jibo Zhang, Mingqian Zhang, Yifang Ren, Xiaoping Xie, Fuzheng Wang, Hongyan Wu, and Haidong Jiang. 2023. "Study on the Piecewise Inverse Model of Accumulated Temperature Based on Skewness-Distribution Parameters of Canopy Images in Pepper" Atmosphere 14, no. 1: 7. https://doi.org/10.3390/atmos14010007
APA StyleZhang, P., Yao, Z., Wang, R., Zhang, J., Zhang, M., Ren, Y., Xie, X., Wang, F., Wu, H., & Jiang, H. (2023). Study on the Piecewise Inverse Model of Accumulated Temperature Based on Skewness-Distribution Parameters of Canopy Images in Pepper. Atmosphere, 14(1), 7. https://doi.org/10.3390/atmos14010007