Change in Population Exposure to Future Tropical Cyclones in Northwest Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Area
2.2. Tropical Cyclone Simulation
2.2.1. Tropical Cyclone Wind Field Simulation
2.2.2. Tropical Cyclone Rainfall Simulation
2.3. Analysis Methods
2.3.1. Tropical Cyclone Impact Frequency
2.3.2. Population Exposure to Tropical Cyclone
2.3.3. Change in Tropical Cyclone Impact Frequency, Population and Population Exposure
2.3.4. Contribution Rate to Population Exposure Change
3. Results
3.1. Changes in Tropical Cyclone Influences and Population
3.2. Spatial and Temporal Changes in Population Exposure to Tropical Cyclones
3.3. Contributions to Population Exposure to Tropical Cyclones
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Tropical Cyclone Rainfall Simulation
Appendix A.1.1. Data Sources
Appendix A.1.2. Analysis Method of Tropical Cyclone Rainfall Simulation
Constant | 95% CI of Constant | p-Value (Uncorrected) | Slope | 95% CI of Slope | p-Value (Uncorrected) | d.f. | R2 | |
---|---|---|---|---|---|---|---|---|
3.38 | [3.36, 3.41] | 0 | 2.73 × 10−3 | [2.37 × 10−3, 3.09 × 10−3] | 2.68 × 10−43 | 650 | 0.25 | |
3646.27 | [3575.05, 3717.5] | 0 | −26.61 | [−28.46, −24.76] | 1.97 × 10−115 | 661 | 0.55 | |
3801.71 | [3683.59, 3919.84] | 6.34 × 10−251 | −35.33 | [−38.82, −31.85] | 1.69 × 10−66 | 537 | 0.42 |
Appendix A.1.3. Regression Results
(Uncorrected) | (Uncorrected) | (Uncorrected) | d.f. | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Northern Hemisphere | 6.58 | [6.47, 6.70] | 0 | −0.23 | [−0.25, −0.21] | 1.22 × 10−81 | 0.55 | [0.53, 0.58] | 0 | 3724 | 0.43 |
Southern Hemisphere | 7.32 | [7.16, 7.49] | 0 | −0.39 | [−0.42, −0.35] | 1.22 × 10−94 | 0.49 | [0.46, 0.52] | 1.00 × 10−175 | 2463 | 0.38 |
Northern Atlantic Ocean | 5.99 | [5.80, 6.18] | 0 | −0.12 | [−0.16, −0.08] | 1.09 × 10−09 | 0.59 | [0.56, 0.62] | 4.50 × 10−262 | 2460 | 0.41 |
Northern Indian Ocean | 7.41 | [7.13, 7.68] | 4.15 × 10−288 | −0.19 | [−0.27, −0.11] | 3.52 × 10−06 | 0.31 | [0.26, 0.37] | 2.51 × 10−26 | 963 | 0.12 |
Eastern Pacific Ocean | 6.76 | [6.46, 7.06] | 5.19 × 10−262 | −0.72 | [−0.78, −0.66] | 5.00 × 10−94 | 0.76 | [0.7, 0.82] | 3.38 × 10−120 | 1377 | 0.48 |
Western North Pacific Ocean | 6.35 | [6.21, 6.49] | 0 | −0.14 | [−0.17, −0.11] | 1.03 × 10−20 | 0.58 | [0.55, 0.61] | 4.17 × 10−289 | 2374 | 0.44 |
Southern Indian Ocean | 7 | [6.83, 7.18] | 0 | −0.33 | [−0.37, −0.29] | 2.79 × 10−62 | 0.5 | [0.47, 0.54] | 7.65 × 10−152 | 2237 | 0.34 |
Southern Pacific Ocean | 8.25 | [8.05, 8.45] | 0 | −0.57 | [−0.62, −0.53] | 1.90 × 10−122 | 0.43 | [0.39, 0.47] | 1.07 × 10−93 | 1671 | 0.40 |
Appendix A.1.4. Spatial Distribution of Simulated Total Tropical Cyclone Rainfall
Appendix A.1.5. Data Availability Statement
References
- Peduzzi, P.; Chatenoux, B.; Dao, Q.-H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Welker, C.; Faust, E. Tropical cyclone-related socio-economic losses in the western North Pacific region. Nat. Hazards Earth Syst. Sci. 2013, 13, 115–124. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Geiger, T.; Gütschow, J.; Bresch, D.N.; Emanuel, K.; Frieler, K. Double benefit of limiting global warming for tropical cyclone exposure. Nat. Clim. Chang. 2021, 11, 861–866. [Google Scholar] [CrossRef]
- Maxwell, J.T.; Bregy, J.C.; Robeson, S.M.; Knapp, P.A.; Soulé, P.T.; Trouet, V. Recent increases in tropical cyclone precipitation extremes over the US east coast. Proc. Natl. Acad. Sci. USA 2021, 118, e21056361182021. [Google Scholar] [CrossRef]
- Park, D.S.R.; Ho, C.H.; Kim, J.H. Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environ. Res. Lett. 2014, 9, 014008. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.W.; Cha, Y.; Kim, H.D.; Kang, S.D. Latitudinal change of tropical cyclone maximum intensity in the western North Pacific. Adv. Meteorol. 2016, 2016, 5829162. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P.; Emanuel, K.A.; Camargo, S.J. Past and projected changes in western North Pacific tropical cyclone exposure. J. Clim. 2016, 29, 5725–5739. [Google Scholar] [CrossRef] [Green Version]
- Oey, L.Y.; Chou, S. Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades. J. Geophys. Res. Ocean. 2016, 121, 5181–5192. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y. Weak tropical cyclones dominate the poleward migration of the annual mean location of lifetime maximum intensity of northwest Pacific tropical cyclones since 1980. J. Clim. 2017, 30, 6873–6882. [Google Scholar] [CrossRef]
- Song, J.; Klotzbach, P.J. What has controlled the poleward migration of annual averaged location of tropical cyclone lifetime maximum intensity over the western North Pacific since 1961? Geophys. Res. Lett. 2018, 45, 1148–1156. [Google Scholar] [CrossRef]
- Mei, W.; Xie, S.P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 2016, 9, 753–757. [Google Scholar] [CrossRef]
- Hill, K.A.; Lackmann, G.M. The impact of future climate change on TC intensity and structure: A downscaling approach. J. Clim. 2011, 24, 4644–4661. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1029–1136. [Google Scholar]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.A. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef] [Green Version]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Emanuel, K.A. Global warming-induced upper-ocean freshening and the intensification of super typhoons. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hanson, S.; Nicholls, R.; Ranger, N.; Hallegatte, S.; Corfee-Morlot, J.; Herweijer, C.; Chateau, J. A global ranking of port cities with high exposure to climate extremes. Clim. Chang. 2011, 104, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.C.; Ashley, W.S. Changes in the US hurricane disaster landscape: The relationship between risk and exposure. Nat. Hazards 2017, 88, 659–682. [Google Scholar] [CrossRef]
- Geiger, T.; Frieler, K.; Bresch, D.N. A global historical data set of tropical cyclone exposure (TCE-DAT). Earth Syst. Sci. Data 2018, 10, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Varis, O.; Taka, M.; Tortajada, C. Global human exposure to urban riverine floods and storms. River 2022, 1, 80–90. [Google Scholar] [CrossRef]
- Ye, M.; Wu, J.; Wang, C.; He, X. Historical and future changes in asset value and GDP in areas exposed to tropical cyclones in China. Weather Clim. Soc. 2019, 11, 307–319. [Google Scholar] [CrossRef]
- Güneralp, B.; Güneralp, İ.; Liu, Y. Changing global patterns of urban exposure to flood and drought hazards. Glob. Environ. Chang. 2015, 31, 217–225. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Liao, X.; Xu, W.; Zhang, J.; Li, Y.; Tian, Y. Global exposure to rainstorms and the contribution rates of climate change and population change. Sci. Total Environ. 2019, 663, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Su, B.; Wang, Y.; Wang, G.; Guo, G. Gridded datasets for population and economy under Shared Socioeconomic Pathways for 2020–2100. Clim. Chang. Res. 2022, 18, 381–383. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Holland, G.J. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Holland, G.J.; Belanger, J.I.; Fritz, A. A revised model for radial profiles of hurricane winds. Mon. Weather Rev. 2010, 138, 4393–4401. [Google Scholar] [CrossRef]
- Vickery, P.J.; Wadhera, D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H* Wind data. J. Appl. Meteorol. Climatol. 2008, 47, 2497–2517. [Google Scholar] [CrossRef]
- Lin, W. Typhoon Wind Hazard Analysis of Hainan Island. Master Dissertation, Beijing Normal University, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Qin, L.; Xu, W.; Qin, M.; Li, Z.; Qiao, Y.; Liu, B.; Zheng, J. Land use and land cover play weak roles in typhoon economic losses at the county level. Geomat. Nat. Hazards Risk 2021, 12, 1287–1297. [Google Scholar] [CrossRef]
- Tan, C. Assessment on Forest Damage Risk in Coastal China to Tropical Cyclone Wind Based on Parametric Wind Field Model and Multi-Source Remote Sensing. Doctoral Dissertation, Beijing Normal University, Beijing, China, 2020. (In Chinese). [Google Scholar]
- Harper, B.A.; Hardy, T.; Mason, L.; McConochie, J.D. Queensland Climate Change and Community Vulnerability to Tropical Cyclones: Ocean Hazards Assessment-Stage 1; Report Prepared by Systems Engineering Australia in Conjunction with James Cook University Marine Modelling Unit; Queensland Government: Brisbane, Australia, 2001. [Google Scholar]
- Lau, K.M.; Zhou, Y.P.; Wu, H.T. Have tropical cyclones been feeding more extreme rainfall? J. Geophys. Res. Atmos. 2008, 113, D23. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lai, Y.; Gu, X.; Shi, P.; Singh, V.P. Tropical cyclonic rainfall in China: Changing properties, seasonality, and causes. J. Geophys. Res. Atmos. 2018, 123, 4476–4489. [Google Scholar] [CrossRef]
- Jiang, H.; Zipser, E.J. Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Clim. 2010, 23, 1526–1543. [Google Scholar] [CrossRef]
- Prat, O.P.; Nelson, B.R. Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis. Water Resour. Res. 2013, 49, 7236–7254. [Google Scholar] [CrossRef]
- Barfus, K.; Bernhofer, C. Assessment of GCM performances for the Arabian Peninsula, Brazil, and Ukraine and indications of regional climate change. Environ. Earth Sci. 2014, 72, 4689–4703. [Google Scholar] [CrossRef]
- Samouly, A.A.; Luong, C.N.; Li, Z.; Smith, S.; Baetz, B.; Ghaith, M. Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada. Environ. Earth Sci. 2018, 77, 524. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNISDR). Terminology. Available online: https://www.undrr.org/terminology (accessed on 21 September 2022).
- Kossin, J.P. A global slowdown of tropical-cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef]
- Jones, B.; O’Neill, B.C.; McDaniel, L.; McGinnis, S.; Mearns, L.O.; Tebaldi, C. Future population exposure to US heat extremes. Nat. Clim. Chang. 2015, 5, 652–655. [Google Scholar] [CrossRef]
- Liu, Z.; Anderson, B.; Yan, K.; Dong, W.; Liao, H.; Shi, P. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change. Sci. Rep. 2017, 7, 43909. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Harper, B.A.; Kepert, J.D.; Ginger, J.D. Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions; WMO: Geneva, Switzerland, 2010. [Google Scholar]
- Beck, H.E.; Van Dijk, A.I.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.; McVicar, T.R.; Adler, R.F. MSWEP V2 global 3-hourly 0.1 precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar]
- Wen, S.; Su, B.; Wang, Y.; Fischer, T.; Li, X.; Yin, Y.; Chao, G.; Wang, R.; Jiang, T. Economic sector loss from influential tropical cyclones and relationship to associated rainfall and wind speed in China. Glob. Planet. Chang. 2018, 169, 224–233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Liao, X.; Xu, W.; Meng, C.; Zhai, G. Change in Population Exposure to Future Tropical Cyclones in Northwest Pacific. Atmosphere 2023, 14, 69. https://doi.org/10.3390/atmos14010069
Qin L, Liao X, Xu W, Meng C, Zhai G. Change in Population Exposure to Future Tropical Cyclones in Northwest Pacific. Atmosphere. 2023; 14(1):69. https://doi.org/10.3390/atmos14010069
Chicago/Turabian StyleQin, Lianjie, Xinli Liao, Wei Xu, Chenna Meng, and Guangran Zhai. 2023. "Change in Population Exposure to Future Tropical Cyclones in Northwest Pacific" Atmosphere 14, no. 1: 69. https://doi.org/10.3390/atmos14010069
APA StyleQin, L., Liao, X., Xu, W., Meng, C., & Zhai, G. (2023). Change in Population Exposure to Future Tropical Cyclones in Northwest Pacific. Atmosphere, 14(1), 69. https://doi.org/10.3390/atmos14010069