In-Depth Examination of Machine Learning Models for the Prediction of Ground Temperature at Various Depths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data Collection
2.2. Used Data
2.3. Model Development
2.3.1. Multiple Linear Regression
2.3.2. Multi-Layered Perceptron
2.3.3. Random Forest Regression
2.3.4. Support Vector Regression
2.3.5. Extreme Gradient Boosting
2.4. Modeling Concept
Algorithms | Hyperparameters | Distribution (Range) |
---|---|---|
Multiple linear regression (MLR) | - | - |
Multilayered perceptron (MLP) | Number of hidden layers | * Ud (1, 4) |
Number of hidden neurons | Ud (1, 200) | |
Learning rate | Adaptive | |
Solver | Adam | |
Activation function | Relu | |
Support vector regression (SVR) | Kernel | Radial-basis function |
C | Ud (1, 1000) | |
Gamma | 1 | |
Epsilon | 0.1 | |
Random forest regression (RFR) | Number of trees | Ud (10, 250) |
Minimum number of observations in a leaf | Ud (1, 30) | |
Number of variables used in each split | Ud (1, 4) | |
Maximum tree depth | Ud (1, 100) | |
XGBoost (XGB) | Max depth of a tree | Ud (1, 10) |
Learning rate | Ud (0.05, 0.1) | |
Sample ratio of training data | 2 | |
Sample ratio of features | 2 | |
Alpha | 0.2 | |
Number of estimators | Ud (100, 1000) |
3. Results
3.1. Dataset Performance
3.2. Model Performance
4. Discussion
5. Conclusions
- The XGB model outperforms the other standard ML-based models in any depth GT prediction. Furthermore, the model’s dependability is superior to that of the others.
- In order to develop an optimum model, the input dataset is critical to improving the efficiency of the output. Finding the proper input parameters utilizing feature importance will enhance the model’s maximum efficiency, yet providing a more significant number of input parameters increases model complexity and computational time.
- Tuning the hyperparameters (fine-tuning) of the computational model can significantly enhance efficiency and help overcome overfitting challenges.
- GT modeling has limitations in that GT is not a universal number and can be volatile related to soil color, shape, vegetation cover, physical and chemical characteristics, and location. As a result, developing a worldwide model to anticipate GT is insufficient. The constraints highlighted above can be overcome in future studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Arulmozhi, E.; Moon, B.E.; Basak, J.K.; Sihalath, T.; Park, J.; Kim, H.T. Machine Learning-Based Microclimate Model for Indoor Air Temperature and Relative Humidity Prediction in a Swine Building. Animals 2021, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of Climate Change for Agricultural Productivity in the Early Twenty-First Century. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef] [PubMed]
- Arulmozhi, E.; Bhujel, A.; Moon, B.E.; Kim, H.T. The Application of Cameras in Precision Pig Farming: An Overview for Swine-Keeping Professionals. Animals 2021, 11, 2343. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M. Impacts of 1.5°C of Global Warming on Natural and Human Systems. Spec. Rep. Intergov. Panel Clim. Chang. 2018, 175–181. [Google Scholar]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate Change Impacts on Crop Productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 34032. [Google Scholar] [CrossRef]
- Sultan, B.; Defrance, D.; Iizumi, T. Evidence of Crop Production Losses in West Africa Due to Historical Global Warming in Two Crop Models. Sci. Rep. 2019, 9, 12834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; Anderegg, W.; Bernier, P.; Carlo Espinoza, J.; Semenov, S.; Xu, X.; et al. Land-Climate Interactions Coordinating. IPCC Rep. 2019, 131–248. [Google Scholar]
- Gupta, D.; Chowdhury, A.; Rahaman, M.S. Soil Temperature Prediction under Limited Data Condition. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 102–112. [Google Scholar] [CrossRef]
- Sabri, N.S.A.; Zakaria, Z.; Mohamad, S.E.; Jaafar, A.B.; Hara, H. Importance of Soil Temperature for the Growth of Temperate Crops under a Tropical Climate and Functional Role of Soil Microbial Diversity. Microbes Environ. 2018, 33, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, M. The Use of Artificial Neural Networks for Forecasting the Monthly Mean Soil Temperatures in Adana, Turkey. Turkish J. Agric. For. 2011, 35, 83–93. [Google Scholar] [CrossRef]
- Alizamir, M.; Kisi, O.; Ahmed, A.N.; Mert, C.; Fai, C.M.; Kim, S.; Kim, N.W.; El-Shafie, A. Advanced Machine Learning Model for Better Prediction Accuracy of Soil Temperature at Different Depths. PLoS ONE 2020, 15, e0231055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, C.L.; Marks, D.; Van Vactor, S.S. Long-Term Climate Database, Reynolds Creek Experimental Watershed, Idaho, United States. Water Resour. Res. 2001, 37, 2839–2841. [Google Scholar] [CrossRef]
- Jahanfar, A.; Drake, J.; Sleep, B.; Gharabaghi, B. A Modified FAO Evapotranspiration Model for Refined Water Budget Analysis for Green Roof Systems. Ecol. Eng. 2018, 119, 45–53. [Google Scholar] [CrossRef]
- Hao, H.; Yu, F.; Li, Q. Soil Temperature Prediction Using Convolutional Neural Network Based on Ensemble Empirical Mode Decomposition. IEEE Access 2020, 9, 4084–4096. [Google Scholar] [CrossRef]
- Tian, Y.; Guan, B.; Zhou, D.; Yu, J.; Li, G.; Lou, Y. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.). Sci. World J. 2014, 2014, 834630. [Google Scholar] [CrossRef] [Green Version]
- Onwuka, B. Effects of Soil Temperature on Some Soil Properties and Plant Growth. Adv. Plants Agric. Res. 2018, 8, 34–37. [Google Scholar] [CrossRef]
- Enrique, G.S.; Braud, I.; Jean-Louis, T.; Michel, V.; Pierre, B.; Jean-Christophe, C. Modelling Heat and Water Exchanges of Fallow Land Covered with Plant-Residue Mulch. Agric. For. Meteorol. 1999, 97, 151–169. [Google Scholar] [CrossRef]
- Kang, S.; Kim, S.; Oh, S.; Lee, D. Predicting Spatial and Temporal Patterns of Soil Temperature Based on Topography, Surface Cover and Air Temperature. For. Ecol. Manag. 2000, 136, 173–184. [Google Scholar] [CrossRef]
- Mihalakakou, G. On Estimating Soil Surface Temperature Profiles. Energy Build. 2002, 34, 251–259. [Google Scholar] [CrossRef]
- Koçak, K.; Şaylan, L.; Eitzinger, J. Nonlinear Prediction of Near-Surface Temperature via Univariate and Multivariate Time Series Embedding. Ecol. Modell. 2004, 173, 1–7. [Google Scholar] [CrossRef]
- Gaumont-Guay, D.; Black, T.A.; Griffis, T.J.; Barr, A.G.; Jassal, R.S.; Nesic, Z. Interpreting the Dependence of Soil Respiration on Soil Temperature and Water Content in a Boreal Aspen Stand. Agric. For. Meteorol. 2006, 140, 220–235. [Google Scholar] [CrossRef]
- Gao, Z.; Bian, L.; Hu, Y.; Wang, L.; Fan, J. Determination of Soil Temperature in an Arid Region. J. Arid Environ. 2007, 71, 157–168. [Google Scholar] [CrossRef]
- Droulia, F.; Lykoudis, S.; Tsiros, I.; Alvertos, N.; Akylas, E.; Garofalakis, I. Ground Temperature Estimations Using Simplified Analytical and Semi-Empirical Approaches. Sol. Energy 2009, 83, 211–219. [Google Scholar] [CrossRef]
- Prangnell, J.; McGowan, G. Soil Temperature Calculation for Burial Site Analysis. Forensic Sci. Int. 2009, 191, 104–109. [Google Scholar] [CrossRef]
- Adhikari, R.; Agrawal, R. An Introductory Study on Time Series Modeling and Forecasting Ratnadip Adhikari R. K. Agrawal. arXiv 2013, arXiv:1302.6613. [Google Scholar]
- Shirvani, A.; Moradi, F.; Moosavi, A.A. Time Series Modelling of Increased Soil Temperature Anomalies during Long Period. Int. Agrophysics 2015, 29, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Kotu, V.; Deshpande, B. Chapter 12. Time Series Forecasting, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2019; pp. 395–445. [Google Scholar]
- Patowary, A.N. Monthly Temperature Prediction Based on Arima Model: A Case Study in Dibrugarh Station of Assam, India. Int. J. Adv. Res. Comput. Sci. 2017, 8, 292–298. [Google Scholar] [CrossRef]
- Samadianfard, S.; Ghorbani, M.A.; Mohammadi, B. Forecasting Soil Temperature at Multiple-Depth with a Hybrid Artificial Neural Network Model Coupled-Hybrid Firefly Optimizer Algorithm. Inf. Process. Agric. 2018, 5, 465–476. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Hao, W.; Gao, L.; Gong, D. Estimation of Soil Temperature from Meteorological Data Using Different Machine Learning Models. Geoderma 2019, 338, 67–77. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Evaluating the Performance of Artificial Intelligence Methods for Estimation of Monthly Mean Soil Temperature without Using Meteorological Data. Environ. Earth Sci. 2017, 76, 325. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Ahmadi, F.; Kozekalani Sales, A. Modelling Daily Soil Temperature at Different Depths via the Classical and Hybrid Models. Meteorol. Appl. 2020, 27, e1941. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Li, Q. A New Embedded Estimation Model for Soil Temperature Prediction. Sci. Program. 2021, 2021, 5881018. [Google Scholar] [CrossRef]
- Feigl, M.; Lebiedzinski, K.; Herrnegger, M.; Schulz, K. Machine-Learning Methods for Stream Water Temperature Prediction. Hydrol. Earth Syst. Sci. 2021, 25, 2951–2977. [Google Scholar] [CrossRef]
- Sahoo, K.; Samal, A.K.; Pramanik, J.; Pani, S.K. Exploratory Data Analysis Using Python. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 4727–4735. [Google Scholar] [CrossRef]
- Bilgili, M. Prediction of Soil Temperature Using Regression and Artificial Neural Network Models. Meteorol. Atmos. Phys. 2010, 110, 59–70. [Google Scholar] [CrossRef]
- Imanian, H.; Cobo, J.H.; Payeur, P.; Shirkhani, H.; Mohammadian, A. A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction. Preprints 2022, 2022020101. [Google Scholar] [CrossRef]
- Elanchezhian, A.; Basak, J.K.; Park, J.; Khan, F.; Okyere, F.G.; Lee, Y.; Bhujel, A.; Lee, D.; Sihalath, T.; Kim, H.T. Evaluating Different Models Used for Predicting the Indoor Microclimatic Parameters of a Greenhouse. Appl. Ecol. Environ. Res. 2020, 18, 2141–2161. [Google Scholar] [CrossRef]
- Taki, M.; Ajabshirchi, Y.; Ranjbar, S.F.; Matloobi, M. Application of Neural Networks and Multiple Regression Models in Greenhouse Climate Estimation. Agric. Eng. Int. CIGR J. 2016, 18, 29–43. [Google Scholar]
- Ma, X.; Fang, C.; Ji, J. Prediction of Outdoor Air Temperature and Humidity Using Xgboost. IOP Conf. Ser. Earth Environ. Sci. 2020, 427, 12013. [Google Scholar] [CrossRef]
- Vassallo, D.; Krishnamurthy, R.; Sherman, T.; Fernando, H.J.S. Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting. Energies 2020, 13, 5488. [Google Scholar] [CrossRef]
- Walker, S.; Khan, W.; Katic, K.; Maassen, W.; Zeiler, W. Accuracy of Different Machine Learning Algorithms and Added-Value of Predicting Aggregated-Level Energy Performance of Commercial Buildings. Energy Build. 2020, 209, 109705. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. In Advances in Neural Information Processing Systems; Mozer, M.C., Jordan, M., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1996; p. 9. [Google Scholar]
- Drucker, H.; Surges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. Adv. Neural Inf. Process. Syst. 1997, 1, 155–161. [Google Scholar]
- Hasan, N.; Nath, N.C.; Rasel, R.I. A Support Vector Regression Model for Forecasting Rainfall. In Proceedings of the 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), Khulna, Bangladesh, 10–12 December 2015; pp. 554–559. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Wei, G.; Song, T.; Zhang, C.; Zhou, H. Flash Flood Forecasting Using Support Vector Regression Model in a Small Mountainous Catchment. Water 2019, 11, 1327. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ibrahem Ahmed Osman, A.; Najah Ahmed, A.; Chow, M.F.; Feng Huang, Y.; El-Shafie, A. Extreme Gradient Boosting (Xgboost) Model to Predict the Groundwater Levels in Selangor Malaysia. Ain. Shams Eng. J. 2021, 12, 1545–1556. [Google Scholar] [CrossRef]
- Dashdondov, K.; Song, M.H. Factorial Analysis for Gas Leakage Risk Predictions from a Vehicle-Based Methane Survey. Appl. Sci. 2022, 12, 115. [Google Scholar] [CrossRef]
- Vasker Sharma Imputing Missing Data in Hydrology Using Machine Learning Models. Int. J. Eng. Res. 2021, 10, 78–82. [CrossRef]
- Yoon, H.; Jun, S.C.; Hyun, Y.; Bae, G.O.; Lee, K.K. A Comparative Study of Artificial Neural Networks and Support Vector Machines for Predicting Groundwater Levels in a Coastal Aquifer. J. Hydrol. 2011, 396, 128–138. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [Green Version]
- Sattari, M.T.; Avram, A.; Apaydin, H.; Matei, O. Soil Temperature Estimation with Meteorological Parameters by Using Tree-Based Hybrid Data Mining Models. Mathematics 2020, 8, 1407. [Google Scholar] [CrossRef]
S.No | Variable Name | Nomenclature | Unit | Skewness | Kurtosis | Mean | SD | Min | Max |
---|---|---|---|---|---|---|---|---|---|
1 | Temperature | Te | (°C) | −0.25 | −0.64 | 15.04 | 8.42 | −12.2 | 36.1 |
2 | Precipitation | Pr | (mm) | 21.27 | 708.72 | 2.03 | 1.47 | 0 | 78.8 |
3 | Wind speed | WS | (m/s) | 1.09 | 2.59 | 3.16 | 1.76 | 0 | 18.1 |
4 | Wind direction | WD | (Azimuth) | −0.04 | −1.41 | 181.44 | 111.16 | 0 | 360 |
5 | Humidity | Hu | (%) | −0.15 | −0.85 | 62.29 | 20.87 | 7 | 100 |
6 | Vapor pressure | VP | (hPa) | 0.59 | −0.75 | 12.9 | 8.6 | 0.6 | 36.3 |
7 | Dew point temperature | DT | (°C) | −0.42 | −0.66 | 7.15 | 11.68 | −29 | 27.3 |
8 | Local atmospheric pressure | AP | (hPa) | −0.18 | −0.05 | 1007.5 | 7.41 | 952.2 | 1027.1 |
9 | Barometric pressure | BP | (hPa) | −0.16 | −0.12 | 1015.8 | 7.66 | 959.7 | 1036 |
10 | Sunshine | SS | (h) | −0.27 | −0.8 | 0.55 | 0.33 | 0 | 1 |
11 | Solar radiation | SR | (MJ/m2) | 0.83 | 1.25 | 1.17 | 0.74 | 0 | 4.77 |
12 | Mid-lower cloud cover | Cl | (decile) | 0.78 | −1.05 | 2.82 | 3.54 | 0 | 10 |
13 | Visibility | Vi | (10 m) | 1.37 | 1.62 | 2019.5 | 1178 | 14 | 5000 |
14 | Ground temperature | GT | (°C) | 0.44 | 0.29 | 17.18 | 11.68 | −10 | 66.3 |
15 | 5 cm underground temperature | GT_5 | (°C) | 0.1 | −0.84 | 16.78 | 8.97 | −4.4 | 44.7 |
16 | 10 cm underground temperature | GT_10 | (°C) | 0.04 | −1.03 | 16.61 | 8.43 | −0.5 | 40.7 |
17 | 20 cm underground temperature | GT_20 | (°C) | 0.02 | −1.16 | 16.72 | 7.84 | 1.5 | 35.4 |
18 | 30 cm underground temperature | GT_30 | (°C) | 0.02 | −1.21 | 16.68 | 7.46 | 2.4 | 32.6 |
GT | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | |||||||||||
Models | Training | Testing | Training | Testing | ||||||||
MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
MLR | 3.204 | 4.151 | 0.874 | 3.205 | 4.131 | 0.872 | 3.316 | 4.238 | 0.869 | 3.312 | 4.219 | 0.866 |
MLP | 1.616 | 2.420 | 0.957 | 1.668 | 2.475 | 0.954 | 1.865 | 2.764 | 0.944 | 1.813 | 2.699 | 0.945 |
RFR | 4.158 | 5.991 | 1.0 | 1.234 | 2.006 | 0.969 | 0.531 | 0.869 | 0.994 | 1.372 | 2.170 | 0.964 |
SVR | 1.791 | 2.971 | 0.935 | 1.815 | 2.955 | 0.934 | 1.865 | 2.764 | 0.944 | 2.096 | 3.282 | 0.919 |
XGB | 0.669 | 0.915 | 0.993 | 1.063 | 1.679 | 0.978 | 0.805 | 1.109 | 0.991 | 1.142 | 1.771 | 0.976 |
GT_5 | ||||||||||||
M1 | M2 | |||||||||||
Models | Training | Testing | Training | Testing | ||||||||
MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
MLR | 1.916 | 2.501 | 0.922 | 1.917 | 2.505 | 0.920 | 1.988 | 2.618 | 0.915 | 1.986 | 2.628 | 0.912 |
MLP | 1.360 | 1.807 | 0.959 | 1.390 | 1.854 | 0.956 | 1.654 | 2.168 | 0.941 | 1.631 | 2.164 | 0.941 |
RFR | 3.942 | 5.443 | 1.0 | 1.080 | 1.555 | 0.969 | 0.453 | 0.704 | 0.993 | 1.184 | 1.784 | 0.959 |
SVR | 1.457 | 2.011 | 0.949 | 1.480 | 2.031 | 0.948 | 1.654 | 2.168 | 0.941 | 1.672 | 2.258 | 0.935 |
XGB | 0.594 | 0.789 | 0.992 | 0.887 | 1.263 | 0.979 | 0.772 | 1.078 | 0.985 | 0.996 | 1.432 | 0.974 |
GT_10 | ||||||||||||
M1 | M2 | |||||||||||
Models | Training | Testing | Training | Testing | ||||||||
MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
MLR | 1.832 | 2.332 | 0.923 | 1.825 | 2.315 | 0.923 | 1.982 | 2.513 | 0.911 | 1.987 | 2.510 | 0.910 |
MLP | 1.352 | 1.755 | 0.956 | 1.380 | 1.803 | 0.953 | 1.768 | 2.275 | 0.927 | 1.773 | 2.268 | 0.926 |
RFR | 3.786 | 5.197 | 1.0 | 0.954 | 1.381 | 0.972 | 0.395 | 0.601 | 0.994 | 1.037 | 1.531 | 0.966 |
SVR | 1.417 | 1.894 | 0.949 | 1.429 | 1.900 | 0.948 | 1.768 | 2.275 | 0.927 | 1.790 | 2.322 | 0.923 |
XGB | 0.511 | 0.674 | 0.993 | 0.741 | 1.025 | 0.985 | 0.655 | 0.906 | 0.988 | 0.846 | 1.194 | 0.979 |
GT_20 | ||||||||||||
M1 | M2 | |||||||||||
Models | Training | Testing | Training | Testing | ||||||||
MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
MLR | 1.893 | 2.405 | 0.906 | 1.900 | 2.395 | 0.905 | 2.136 | 2.670 | 0.884 | 2.146 | 2.672 | 0.882 |
MLP | 1.298 | 1.684 | 0.954 | 1.343 | 1.735 | 0.950 | 1.882 | 2.418 | 0.905 | 1.834 | 2.353 | 0.909 |
RFR | 3.784 | 5.083 | 1.0 | 0.658 | 1.008 | 0.983 | 0.230 | 0.411 | 0.997 | 0.595 | 0.907 | 0.986 |
SVR | 1.379 | 1.843 | 0.944 | 1.402 | 1.848 | 0.943 | 1.801 | 2.814 | 0.906 | 1.910 | 2.474 | 0.899 |
XGB | 0.286 | 0.368 | 0.997 | 0.416 | 0.551 | 0.995 | 0.316 | 0.362 | 0.997 | 0.415 | 0.560 | 0.994 |
GT_30 | ||||||||||||
M1 | M2 | |||||||||||
Models | Training | Testing | Training | Testing | ||||||||
MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
MLR | 1.969 | 2.503 | 0.887 | 1.985 | 2.501 | 0.886 | 2.195 | 2.746 | 0.864 | 2.208 | 2.753 | 0.862 |
MLP | 1.341 | 1.761 | 0.944 | 1.399 | 1.828 | 0.939 | 1.812 | 2.370 | 0.899 | 1.875 | 2.412 | 0.894 |
RFR | 3.716 | 4.949 | 1.0 | 0.491 | 0.857 | 0.986 | 0.134 | 0.253 | 0.998 | 0.348 | 0.637 | 0.992 |
SVR | 1.421 | 1.916 | 0.934 | 1.457 | 1.935 | 0.932 | 1.928 | 2.545 | 0.883 | 1.946 | 2.548 | 0.882 |
XGB | 0.189 | 0.243 | 0.998 | 0.280 | 0.367 | 0.997 | 0.165 | 0.215 | 0.999 | 0.222 | 0.289 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-W.; Dashdondov, K. In-Depth Examination of Machine Learning Models for the Prediction of Ground Temperature at Various Depths. Atmosphere 2023, 14, 68. https://doi.org/10.3390/atmos14010068
Yang J-W, Dashdondov K. In-Depth Examination of Machine Learning Models for the Prediction of Ground Temperature at Various Depths. Atmosphere. 2023; 14(1):68. https://doi.org/10.3390/atmos14010068
Chicago/Turabian StyleYang, Jong-Won, and Khongorzul Dashdondov. 2023. "In-Depth Examination of Machine Learning Models for the Prediction of Ground Temperature at Various Depths" Atmosphere 14, no. 1: 68. https://doi.org/10.3390/atmos14010068
APA StyleYang, J. -W., & Dashdondov, K. (2023). In-Depth Examination of Machine Learning Models for the Prediction of Ground Temperature at Various Depths. Atmosphere, 14(1), 68. https://doi.org/10.3390/atmos14010068