Reducing Mercury Emission Uncertainty from Artisanal and Small-Scale Gold Mining Using Bootstrap Confidence Intervals: An Assessment of Emission Reduction Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Uncertainty Associated to ASGM Hg Emission Estimates
2.2. Multi-Step Bootstrap Procedure to Estimate ASGM Hg Emissions
CA | WOA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Country | Region | ASGM (%) | Ratio | Atm. | Ratio | Atm. | Ratio | Atm. | Reference |
Algeria | Northern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,46,47] |
Bolivia | South America | 90–100 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [48] |
Brazil | South America | 10–25 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [49,50] |
Burkina Faso | Western Africa | 10 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [49,51] |
Burundi | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,46,52,53,54] |
Cameroon | Middle Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [53,55] |
Chad | Middle Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [53,56] |
Chile | South America | 20–30 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [53,57] |
China | Eastern Asia | 50–75 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [58] |
Colombia | South America | 90–100 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [33,37,49] |
Congo | Middle Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [49,59] |
Côte d’Ivoire | Western Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,60] |
Ecuador | South America | 100 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [61,62,63] |
Egypt | Northern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,53,64] |
El Salvador | Central America | 20–30 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,65] |
Equatorial Guinea | Middle Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,45,53] |
Ethiopia | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,53,66,67] |
Fiji | Melanesia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [49,68] |
French Guiana | South America | 100 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [69] |
Ghana | Western Africa | 25–50 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,68,70] |
Guinea-Bissau | Western Africa | 10–25 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [71,72] |
Guyana | South America | 90–100 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [53,73,74] |
Honduras | Central America | 10 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [8,45,53,75] |
Indonesia | South-eastern Asia | 25–50 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,53,76] |
Kenya | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,47,53,77,78] |
Kyrgyzstan | Central Asia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [79] |
Lao People | South-eastern Asia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [8,53,80] |
Liberia | Western Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [47] |
Madagascar | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,47,81] |
Mali | Western Africa | 10–25 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16] |
Mongolia | Eastern Asia | 25–50 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [63] |
Morocco | Northern Africa | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [47,77,82] |
Mozambique | Eastern Africa | 100 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [53,83,84] |
Myanmar | South-eastern Asia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [85,86] |
Namibia | Southern Africa | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [49,87] |
Nicaragua | Central America | 25–50 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [69,88,89] |
Niger | Western Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [53] |
Nigeria | Western Africa | 100 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [90] |
Papua New Guinea | Melanesia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [8,45,53,85] |
Perù | South America | 25–50 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,53,63] |
Philippines | South-eastern Asia | 50–75 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [8,53] |
Rwanda | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [49] |
Senegal | Western Africa | 10 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [91,92] |
Sierra Leone | Western Africa | 100 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,46,53] |
Somalia | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [49,93] |
South Africa | Southern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,53] |
Sri Lanka | Southern Asia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [63,77] |
Sudan | Northern Africa | 90–100 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,53,94] |
Suriname | South America | 50–75 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [45,53] |
Tajikistan | Central Asia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [8,53] |
Tanzania | Eastern Africa | 10–25 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [63] |
Togo | Western Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,95] |
Uganda | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [16,53,63,96] |
Uzbekistan | Central Asia | 20–30 | 1.23 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [53,74] |
Venezuela | South America | 100 | 4.63 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [8,53,74] |
Zimbabwe | Eastern Africa | 20–30 | 1.96 | 0.65–0.83 | 1.0–3.0 | 0.75 | 3.0–5.1 | 0.2 | [86] |
2.3. Scenario of Hg Emissions from ASGM
3. Results
ASGM Hg Emission Scenarios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Hg | Mercury |
ASGM | Artisanal Small-scale Gold Mining |
Au | Gold |
CA | Concentration Amalgam |
WOA | Whole Ore Amalgamation |
GMA | Global Mercury Assessment |
References
- Coulson, M. The History of Mining: The Events, Technology and People Involved in the Industry that Forged the Modern World; Harriman House Limited: Petersfield, UK, 2012. [Google Scholar]
- Mestanza-Ramón, C.; Mora-Silva, D.; D’Orio, G.; Tapia-Segarra, E.; Gaibor, I.D.; Esparza Parra, J.F.; Chávez Velásquez, C.R.; Straface, S. Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability 2022, 14, 6854. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A case study of heavy metal pollution in water of Bone River by Artisanal Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef] [Green Version]
- Irawan, D.E.; Puradimaja, D.J.; Notosiswoyo, S.; Soemintadiredja, P. Hydrogeochemistry of volcanic hydrogeology based on cluster analysis of Mount Ciremai, West Java, Indonesia. J. Hydrol. 2009, 376, 221–234. [Google Scholar] [CrossRef]
- Shawe, D.R. Introduction to Geology and Resources of Gold, and Geochemistry of Gold; Number 1857 in A; Department of the Interior, US Geological Survey: Boise, ID, USA, 1988. [Google Scholar]
- Seccatore, J.; Veiga, M.; Origliasso, C.; Marin, T.; De Tomi, G. An estimation of the artisanal small-scale production of gold in the world. Sci. Total. Environ. 2014, 496, 662–667. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J.; Telmer, K. Estimating Mercury Use and Documenting Practices in Artisanal and Small-scale Gold Mining (ASGM)-Methods and Tools Version 1.0. UN Environ. 2017. Available online: https://www.unep.org/globalmercurypartnership/resources/tool/estimating-mercury-use-and-documenting-practices-artisanal-and-small-scale-gold (accessed on 15 January 2021).
- Yoshimura, A.; Suemasu, K.; Veiga, M.M. Estimation of Mercury Losses and Gold Production by Artisanal and Small-Scale Gold Mining (ASGM). J. Sustain. Metall. 2021, 7, 1045–1059. [Google Scholar] [CrossRef]
- van den Berg, M.; Kypke, K.; Kotz, A.; Tritscher, A.; Lee, S.Y.; Magulova, K.; Fiedler, H.; Malisch, R. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit–risk evaluation of breastfeeding. Arch. Toxicol. 2017, 91, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Swain, E.B.; Jakus, P.M.; Rice, G.; Lupi, F.; Maxson, P.A.; Pacyna, J.M.; Penn, A.; Spiegel, S.J.; Veiga, M.M. Socioeconomic consequences of mercury use and pollution. Ambio 2007, 36, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopes-Araújo, A.; Santos-Sacramento, L.; Takeda, P.Y.; de Matos Macchi, B.; do Nascimento, J.L.M.; Maia, C.S.; Lima, R.R.; Arrifano, G.P. Mercury: What can we learn from the Amazon? Environ. Int. 2021, 146, 106223. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.G.; Bouchet, S.; Tolu, J.; Björn, E.; Mateos-Rivera, A.; Bertilsson, S. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat. Commun. 2017, 8, 14255. [Google Scholar] [CrossRef] [PubMed]
- Göthberg, A.; Greger, M. Formation of methyl mercury in an aquatic macrophyte. Chemosphere 2006, 65, 2096–2105. [Google Scholar] [CrossRef] [PubMed]
- Cinnirella, S.; Bruno, D.; Pirrone, N.; Horvat, M.; Živković, I.; Evers, D.; Johnson, S.; Sunderland, E. Mercury concentrations in biota in the Mediterranean Sea, a compilation of 40 years of surveys. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telmer, K.H.; Veiga, M.M. World emissions of mercury from artisanal and small scale gold mining and the knowledge gaps about them. In Report to the World Bank on the “Global Mercury Project”; World Bank: New York, NY, USA, 2008. [Google Scholar]
- Zhang, Y.; Song, Z.; Huang, S.; Zhang, P.; Peng, Y.; Wu, P.; Gu, J.; Dutkiewicz, S.; Zhang, H.; Wu, S.; et al. Global health effects of future atmospheric mercury emissions. Nat. Commun. 2021, 12, 3035. [Google Scholar] [CrossRef]
- Pang, Q.; Gu, J.; Wang, H.; Zhang, Y. Global health impact of atmospheric mercury emissions from artisanal and small-scale gold mining. iScience 2022, 25, 104881. [Google Scholar] [CrossRef] [PubMed]
- De Simone, F.; Gencarelli, C.N.; Hedgecock, I.M.; Pirrone, N. A modeling comparison of mercury deposition from current anthropogenic mercury emission inventories. Environ. Sci. Technol. 2016, 50, 5154–5162. [Google Scholar] [CrossRef] [PubMed]
- Selin, N.E. Global biogeochemical cycling of mercury: A review. Annu. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Hilson, G. Small-scale mining, poverty and economic development in sub-Saharan Africa: An overview. Resour. Policy 2009, 34, 1–5. [Google Scholar] [CrossRef]
- Niane, B.; Guédron, S.; Feder, F.; Legros, S.; Ngom, P.M.; Moritz, R. Impact of recent artisanal small-scale gold mining in Senegal: Mercury and methylmercury contamination of terrestrial and aquatic ecosystems. Sci. Total. Environ. 2019, 669, 185–193. [Google Scholar] [CrossRef]
- Diringer, S.E.; Berky, A.J.; Marani, M.; Ortiz, E.J.; Karatum, O.; Plata, D.L.; Pan, W.K.; Hsu-Kim, H. Deforestation due to artisanal and small-scale gold mining exacerbates soil and mercury mobilization in Madre de Dios, Peru. Environ. Sci. Technol. 2019, 54, 286–296. [Google Scholar] [CrossRef]
- Casagrande, G.C.R.; Franco, D.N.d.M.; Moreno, M.I.C.; de Andrade, E.A.; Battirola, L.D.; de Andrade, R.L.T. Assessment of Atmospheric Mercury Deposition in the Vicinity of Artisanal and Small-Scale Gold Mines Using Glycine max as Bioindicators. Water Air Soil Pollut. 2020, 231, 1–14. [Google Scholar] [CrossRef]
- UNEP. Global Mercury Assessment 2018 UN Environment Programme; Chemicals and Health Branch: Geneva, Switzerland, 2019. [Google Scholar]
- AMAP/UN Environment. Technical Background Report for the Global Mercury Assessment 2018; Arctic Monitoring and Assessment Programme, Oslo, Norway; UN Environment Programme, Chemicals and Health Branch: Geneva, Switzerland, 2019; p. viii+426. [Google Scholar]
- Munthe, J.; Kindbom, K.; Parsmo, R.; Yaramenka, K. Technical Background Report to the Global Mercury Assessment 2018; United Nations Environment Program: Nairobi, Kenya, 2019. [Google Scholar]
- Mahmoud, M.; Liu, Y.; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.; Dominguez, D.; Dominguez, F.; et al. A formal framework for scenario development in support of environmental decision-making. Environ. Model. Softw. 2009, 24, 798–808. [Google Scholar] [CrossRef]
- Engstrom, D.R.; Fitzgerald, W.F.; Cooke, C.A.; Lamborg, C.H.; Drevnick, P.E.; Swain, E.B.; Balogh, S.J.; Balcom, P.H. Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: A reevaluation from lake-sediment archives. Environ. Sci. Technol. 2014, 48, 6533–6543. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.G.; Zhang, Q.; Wu, Y. Projections of global mercury emissions in 2050. Environ. Sci. Technol. 2009, 43, 2983–2988. [Google Scholar] [CrossRef] [PubMed]
- Pacyna, J.M.; Travnikov, O.; De Simone, F.; Hedgecock, I.M.; Sundseth, K.; Pacyna, E.G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 2016, 16, 12495–12511. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.I.; Chang, C.W.; Jin, S.E.; Saminathan, R. Quantifying uncertainty of emission estimates in National Greenhouse Gas Inventories using bootstrap confidence intervals. Atmos. Environ. 2012, 56, 80–87. [Google Scholar] [CrossRef]
- Kocman, D.; Wilson, S.J.; Amos, H.M.; Telmer, K.H.; Steenhuisen, F.; Sunderland, E.M.; Mason, R.P.; Outridge, P.; Horvat, M. Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. Int. J. Environ. Res. Public Health 2017, 14, 138. [Google Scholar] [CrossRef] [Green Version]
- Kopanos, G.M.; Puigjaner, L. Solving Large-Scale Production Scheduling and Planning in the Process Industries; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Persaud, A.W. Mercury Use and the Socio-Economic Significance of Artisanal and Small-Scale Gold (ASGM) Mining in Senegal: A Mixed-Methods Approach to Understanding ASGM. Ph.D. Thesis, York University, Toronto, ON, Canada, 2015. [Google Scholar]
- Cheng, Y.; Nakajima, K.; Nansai, K.; Seccatore, J.; Veiga, M.M.; Takaoka, M. Examining the inconsistency of mercury flow in post-Minamata Convention global trade concerning artisanal and small-scale gold mining activity. Resour. Conserv. Recycl. 2022, 185, 106461. [Google Scholar] [CrossRef]
- García, O.; Veiga, M.M.; Cordy, P.; Suescún, O.E.; Molina, J.M.; Roeser, M. Artisanal gold mining in Antioquia, Colombia: A successful case of mercury reduction. J. Clean. Prod. 2015, 90, 244–252. [Google Scholar] [CrossRef]
- Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Sci. Total. Environ. 2011, 410, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Bose-O’Reilly, S.; Drasch, G.; Beinhoff, C.; Rodrigues-Filho, S.; Roider, G.; Lettmeier, B.; Maydl, A.; Maydl, S.; Siebert, U. Health assessment of artisanal gold miners in Indonesia. Sci. Total. Environ. 2010, 408, 713–725. [Google Scholar] [CrossRef]
- Fritz, M.; McQuilken, J.; Collins, N.; Weldegiorgis, F. Global Trends in Artisanal and Small-Scale Mining (ASM): A Review of Key Numbers and Issues; JSTOR: New York, NY, USA, 2018. [Google Scholar]
- Pfeiffer, W.; de Lacerda, L.D. Mercury inputs into the Amazon region, Brazil. Environ. Technol. 1988, 9, 325–330. [Google Scholar] [CrossRef]
- Pfeiffer, W.; Lacerda, L.; Salomons, W.; Malm, O. Environmental fate of mercury from gold mining in the Brazilian Amazon. Environ. Rev. 1993, 1, 26–37. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap methods: Another look at the jackknife. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 569–593. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- UNEP Website. Available online: https://www.unep.org/ (accessed on 15 January 2021).
- UNEP Webdoc. Available online: https://wedocs.unep.org/ (accessed on 15 January 2021).
- Delvedatabase Website. Available online: https://delvedatabase.org (accessed on 15 January 2021).
- Bennett, G. Integrating Biodiversity Conservation and Sustainable Use: Lessons Learned from Ecological Networks; IUCN: Gland, Switzerland, 2004. [Google Scholar]
- Diaz, F.A.; Katz, L.E.; Lawler, D.F. Mercury pollution in Colombia: Challenges to reduce the use of mercury in artisanal and small-scale gold mining in the light of the Minamata Convention. Water Int. 2020, 45, 730–745. [Google Scholar] [CrossRef]
- Lobo, F.d.L.; Costa, M.; Novo, E.M.L.d.M.; Telmer, K. Distribution of artisanal and small-scale gold mining in the Tapajós River Basin (Brazilian Amazon) over the past 40 years and relationship with water siltation. Remote Sens. 2016, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Black, P.; Richard, M.; Rossin, R.; Telmer, K. Assessing occupational mercury exposures and behaviours of artisanal and small-scale gold miners in Burkina Faso using passive mercury vapour badges. Environ. Res. 2017, 152, 462–469. [Google Scholar] [CrossRef]
- Wagner, L.; Hunter, M. Links Between Artisanal and Small-Scale Gold Mining and Organized Crime in Latin America and Africa. In Illegal Mining; Springer: Berlin/Heidelberg, Germany, 2020; pp. 77–104. [Google Scholar]
- Ceicdata Website. Available online: https://www.ceicdata.com/en (accessed on 15 January 2021).
- Yager, T.R. BURUNDI, COMOROS, MALAWI, MAURITIUS, REUNION, RWANDA, AND SEYCHELLES. Available online: https://delvedatabase.org/uploads/resources/The-Mineral-Industries-Of-Burundi-Comoros-Malawi-Mauritius-Reunion-Rwanda-And-Seychelles.pdf (accessed on 15 January 2021).
- Ralph, O.; Gilles, N.; Fon, N.; Luma, H.; Greg, N. Impact of artisanal gold mining on human health and the environment in the Batouri Gold District, East Cameroon. Acad. J. Interdiscip. Stud. 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Chad-MIA-2020-EN.pdf. Available online: https://www.mercuryconvention.org/sites/default/files/documents/minamata_initial_assessment/Chad-MIA-2020-EN.pdf (accessed on 15 January 2021).
- Cuadra, W.; Dunkerley, P. A history of gold in Chile. Econ. Geol. 1991, 86, 1155–1173. [Google Scholar] [CrossRef]
- Shen, L.; Gunson, A.J. The role of artisanal and small-scale mining in China’s economy. J. Clean. Prod. 2006, 14, 427–435. [Google Scholar] [CrossRef]
- Nkuba, B.; Bervoets, L.; Geenen, S. Invisible and ignored? Local perspectives on mercury in Congolese gold mining. J. Clean. Prod. 2019, 221, 795–804. [Google Scholar] [CrossRef]
- Martin, A.; De Balzac, H.H. The West African El Dorado: Mapping the Illicit Trade of Gold in Côte d’Ivoire, Mali and Burkina Faso. 2016. Available online: https://www.africaportal.org/publications/west-african-el-dorado-mapping-illicit-trade-gold-c%C3%B4te-divoire-mali-and-burkina-faso/ (accessed on 15 January 2021).
- Veiga, M.M.; Nunes, D.; Klein, B.; Shandro, J.A.; Velasquez, P.C.; Sousa, R.N. Mill leaching: A viable substitute for mercury amalgamation in the artisanal gold mining sector? J. Clean. Prod. 2009, 17, 1373–1381. [Google Scholar] [CrossRef]
- Gonçalves, A.O.; Marshall, B.G.; Kaplan, R.J.; Moreno-Chavez, J.; Veiga, M.M. Evidence of reduced mercury loss and increased use of cyanidation at gold processing centers in southern Ecuador. J. Clean. Prod. 2017, 165, 836–845. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Analysis of Formalization Approaches in the Artisanal and Small-Scale Gold Mining Sector Based on Experiences in Ecuador, Mongolia, Peru, Tanzania and Uganda. 2012. Available online: https://www.research.ed.ac.uk/en/publications/analysis-of-formalization-approaches-in-the-artisanal-and-small-s (accessed on 15 January 2021).
- Klemm, D.; Klemm, R.; Murr, A. Gold of the Pharaohs–6000 years of gold mining in Egypt and Nubia. J. Afr. Earth Sci. 2001, 33, 643–659. [Google Scholar] [CrossRef]
- Nacla Website. Available online: https://nacla.org/ (accessed on 15 January 2021).
- Artisanalgold Website. Available online: https://www.artisanalgold.org/ (accessed on 15 January 2021).
- Granitzio, F.; Rayner, J.; Aregay, T. Tulu kapi gold project: A history of “repeated” discoveries in western ethiopia. Kefi Miner. Plc. 2017. Available online: https://www.researchgate.net/publication/320584052_Tulu_Kapi_Gold_Project_A_history_of_repeated_discoveries_in_Western_Ethiopia (accessed on 15 January 2021).
- Tulasi, D.; Fajon, V.; Kotnik, J.; Shlyapnikov, Y.; Adotey, D.K.; Serfor-Armah, Y.; Horvat, M. Mercury methylation in cyanide influenced river sediments: A comparative study in Southwestern Ghana. Environ. Monit. Assess. 2021, 193, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Planetgold Website. Available online: https://www.planetgold.org/ (accessed on 15 January 2021).
- Gyamfi, O.; Sørensen, P.B.; Darko, G.; Ansah, E.; Vorkamp, K.; Bak, J.L. Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere 2021, 267, 128910. [Google Scholar] [CrossRef]
- Nurfitriani, S.; Arisoesilaningsih, E.; Nuraini, Y.; Handayanto, E. Bioaccumulation of mercury by bacteria isolated from small scale gold mining tailings in Lombok, Indonesia. J. Ecol. Eng. 2020, 21, 127–136. [Google Scholar] [CrossRef]
- Lusantono, O.W.; Hantari, Y.N. Artisanal and small-scale gold mining in Indonesia: A case study of Tobongon, East Bolaang Mongondow district, North Sulawesi province. In Proceedings of the AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2245, p. 090010. [Google Scholar]
- Pactworld Website. Available online: https://www.pactworld.org/ (accessed on 15 January 2021).
- thegef Website. Available online: https://www.thegef.org/ (accessed on 15 January 2021).
- Newson, L.A. Silver mining in colonial Honduras. Rev. Hist. Am. 1984, 97, 45–76. [Google Scholar]
- Van Leeuwen, T.M. 25 years of mineral exploration and discovery in Indonesia. J. Geochem. Explor. 1994, 50, 13–90. [Google Scholar] [CrossRef]
- unido Website. Available online: https://www.unido.org/ (accessed on 15 January 2021).
- Mitchell, C.; Palumbo-Roe, B.; Bide, T. Artisanal & Small-Scale Gold Mining Research Field Work, Migori County, Kenya. 2020. Available online: https://nora.nerc.ac.uk/id/eprint/528810/ (accessed on 15 January 2021).
- mercuryconvention Website. Available online: https://www.mercuryconvention.org/ (accessed on 15 January 2021).
- Stuart-Fox, M.; Martin, S.F. A History of Laos; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Campbell, G. Madagascar and the Slave Trade, 1810–18951. J. Afr. Hist. 1981, 22, 203–227. [Google Scholar] [CrossRef]
- icanigeria Website. Available online: https://www.icanigeria.net/ica-economic-sector-report/ (accessed on 15 January 2021).
- mozambique-nap-process Website. Available online: https://www.adaptation-undp.org/projects/mozambique-nap-process (accessed on 15 January 2021).
- Mondlane, S. Gold Amalgamation Process in Mozambique. Artis. Small Scale Gold Min. 2016. Available online: https://wedocs.unep.org/handle/20.500.11822/12773;jsessionid=6705B59271264662B278FEA4B7FF4AA2 (accessed on 15 January 2021).
- Bordia, S. Small scale gold mining and marketing in Papua New Guinea. Lae: Papua New Guin. Univ. Technol. 2016. [Google Scholar]
- Zimbabwe-NAP-2019.pdf. Available online: https://www.mercuryconvention.org/sites/default/files/documents/national_action_plan/Zimbabwe-NAP-2019.pdf (accessed on 15 January 2021).
- Smith, N.M. “Our gold is dirty, but we want to improve”: Challenges to addressing mercury use in artisanal and small-scale gold mining in Peru. J. Clean. Prod. 2019, 222, 646–654. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Silwamba, M.; Paglinawan, F.C.; Mondejar, A.J.S.; Duc, H.G.; Resabal, V.J.; Opiso, E.M.; Igarashi, T.; Tomiyama, S.; Ito, M.; et al. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere 2020, 260, 127574. [Google Scholar] [CrossRef] [PubMed]
- Veiga, M.M.; Maxson, P.A.; Hylander, L.D. Origin and consumption of mercury in small-scale gold mining. J. Clean. Prod. 2006, 14, 436–447. [Google Scholar] [CrossRef]
- Goix, S.; Maurice, L.; Laffont, L.; Rinaldo, R.; Lagane, C.; Chmeleff, J.; Menges, J.; Heimbürger, L.E.; Maury-Brachet, R.; Sonke, J.E. Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. Chemosphere 2019, 219, 684–694. [Google Scholar] [CrossRef]
- Ottenbros, I.; Boerleider, R.; Jubitana, B.; Roeleveld, N.; Scheepers, P. Knowledge and awareness of health effects related to the use of mercury in artisanal and small-scale gold mining in Suriname. Environ. Int. 2019, 122, 142–150. [Google Scholar] [CrossRef] [PubMed]
- info.undp.org Website. Available online: https://info.undp.org (accessed on 15 January 2021).
- Gottesfeld, P.; Andrew, D.; Dalhoff, J. Silica exposures in artisanal small-scale gold mining in Tanzania and implications for tuberculosis prevention. J. Occup. Environ. Hyg. 2015, 12, 647–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoffersen, B.; Køster-Rasmussen, R.; Cardeño, J.I.C.; Appel, P.W.; Smidth, M.; Na-Oy, L.D.; Lardizabal, D.L.; Onos, R.W. Comparison of Gold Yield with Traditional Amalgamation and Direct Smelting in Artisanal Small-Scale Gold Mining in Uganda. J. Health Pollut. 2019, 9, 191205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, J.; Furu, P.; Singo, J.; Shoko, D.; Elbel, J.; Bose-O’Reilly, S.; Steckling-Muschack, N. Determinants of health and health needs assessment of artisanal and small-scale gold miners in Kadoma, Zimbabwe: A mixed method approach. Environ. Res. 2021, 197, 111081. [Google Scholar] [CrossRef]
- Haundi, T.; Tsokonombwe, G.; Ghambi, S.; Mkandawire, T.; Kasambara, A. An Investigation of the Socio-Economic Benefits of Small-Scale Gold Mining in Malawi. Mining 2021, 1, 19–34. [Google Scholar] [CrossRef]
Hg Emissions—Ton/y | Uncertainty—Ton/y (%) | Hg Releases—Ton/y | |||
---|---|---|---|---|---|
Country | This Study | GMA | This Study | GMA | This Study |
Algeria | 0.11 [0.09–0.13] | NoASGM | 0.04 (34%) | NO ASGM | 0.13 [0.09–0.16] |
Bolivia | 39.81 [33.31–46.32] | 40.50 [28.35–52.65] | 13.02 (33%) | 24.3 (60%) | 34.31 [27.81–40.72] |
Brazil | 30.10 [25.65–34.56] | 49.88 [24.94–74.81] | 8.91 (30%) | 49.87 (100%) | 25.94 [21.51–30.35] |
Burkina Faso | 5.58 [5.06–6.10] | 26.33 [13.16–39.49] | 1.04 (19%) | 26.33 (100%) | 6.31 [5.15–7.49] |
Burundi | 0.55 [0.44–0.66] | 0.23 [0.06–0.39] | 0.23 (41%) | 0.33 (143%) | 0.62 [0.44–0.81] |
Cameroon | 0.51 [0.47–0.55] | 1.13 [0.28–1.97] | 0.08 (16%) | 1.69 (150%) | 0.58 [0.48–0.67] |
Chad | 0.02 [0.02–0.02] | 0.23 [0.06–0.39] | 7.18 (36%) | 0.33 (143%) | 0.02 [0.02–0.03] |
Chile | 20.60 [18.31–22.92] | 1.90 [0.48–3.33] | 4.61 (22%) | 2.85 (150%) | 17.76 [15.34–20.18] |
China | 280.20 [251.51–308.92] | 33.75 [8.44–59.06] | 57.41 (20%) | 50.62 (150%) | 353.25 [283.52–423.02] |
Colombia | 85.89 [75.94–95.93] | 51.04 [25.52–76.56] | 20.00 (23%) | 51.04 (100%) | 74.02 [63.54–84.50] |
Congo | 10.26 [9.17–11.35] | 1.13 [0.28–1.97] | 2.18 (21%) | 1.69 (150%) | 11.59 [9.36–13.86] |
Côte d’Ivoire | 3.40 [2.90–3.89] | 0.23 [0.06–0.39] | 0.99 (29%) | 0.33 (143%) | 3.84 [2.98–4.70] |
Ecuador | 26.46 [23.33–29.60] | 26.35 [13.18–39.53] | 6.27 (24%) | 26.35 (100%) | 22.81 [19.58–26.07] |
Egypt | 2.65 [2.23–3.07] | NoASGM | 0.84 (32%) | NO ASGM | 2.99 [2.26–3.72] |
El Salvador | 0.10 [0.05–0.15] | 0.23 [0.06–0.39] | 0.09 (92%) | 0.33 (143%) | 0.09 [0.04–0.13] |
Equatorial Guinea | 0.41 [0.37–0.45] | 0.23 [0.06–0.39] | 0.08 (19%) | 0.33 (143%) | 0.46 [0.38–0.54] |
Ethiopia | 0.17 [0.14–0.21] | 0.23 [0.06–0.39] | 0.06 (36%) | 0.33 (143%) | 0.20 [0.14–0.25] |
Fiji | 0.35 [0.32–0.39] | NoASGM | 0.07 (20%) | NO ASGM | 0.44 [0.36–0.53] |
French Guiana | 37.20 [32.55–41.87] | 5.63 [2.81–8.44] | 9.32 (25%) | 5.63 (100%) | 32.06 [27.17–36.95] |
Ghana | 52.60 [46.92–58.30] | 41.25 [20.63–61.88] | 11.38 (22%) | 41.25 (100%) | 59.44 [47.83–71.06] |
Guinea–Bissau | 23.73 [20.80–26.63] | 0.23 [0.06–0.39] | 5.83 (25%) | 0.33 (143%) | 26.81 [21.10–32.54] |
Guyana | 24.52 [21.49–27.55] | 11.25 [5.63–16.88] | 6.06 (25%) | 11.25 (100%) | 21.13 [18.09–24.21] |
Honduras | 0.45 [0.40–0.50] | 2.38 [1.19–3.56] | 0.10 (22%) | 2.37 (100%) | 0.39 [0.34–0.44] |
Indonesia | 39.41 [34.79–44.12] | 124.54 [62.27–186.81] | 9.33 (24%) | 124.54 (100%) | 49.68 [39.38–59.91] |
Kenya | 0.41 [0.33–0.48] | 2.63 [0.66–4.59] | 0.15 (36%) | 3.93 (149%) | 0.46 [0.34–0.58] |
Kyrgyzstan | 3.23 [2.90–3.56] | 3.56 [0.89–6.23] | 0.66 (20%) | 5.34 (150%) | 4.07 [3.26–4.89] |
Lao | 1.52 [1.36–1.67] | 2.25 [1.13–3.38] | 0.31 (20%) | 2.25 (100%) | 1.91 [1.55–2.28] |
Liberia | 15.99 [14.50–17.49] | 2.38 [1.19–3.56] | 2.99 (19%) | 2.37 (100%) | 18.06 [14.72–21.42] |
Madagascar | 0.13 [0.09–0.18] | 1.13 [0.28–1.97] | 0.09 (71%) | 1.69 (150%) | 0.15 [0.08–0.22] |
Mali | 9.33 [8.32–10.34] | 9.38 [4.69–14.06] | 2.02 (22%) | 9.37 (100%) | 10.54 [8.52–12.54] |
Mongolia | 5.11 [4.42–5.79] | 5.46 [2.73–8.19] | 1.37 (27%) | 5.46 (100%) | 6.44 [5.04–7.86] |
Morocco | 2.50 [2.20–2.79] | NoASGM | 0.59 (24%) | NO ASGM | 3.15 [2.46–3.82] |
Mozambique | 0.29 [0.26–0.33] | 3.00 [1.50–4.50] | 0.07 (25%) | 3 (100%) | 0.33 [0.26–0.40] |
Myanmar | 17.34 [15.60–19.09] | 11.25 [2.81–19.69] | 3.50 (20%) | 16.88 (150%) | 21.86 [17.60–26.17] |
Namibia | 0.05 [0.04–0.05] | NoASGM | 0.01 (20%) | NO ASGM | 0.06 [0.05–0.07] |
Nicaragua | 0.03 [0.02–0.03] | 0.70 [0.49–0.91] | 0.01 (27%) | 0.42 (60%) | 0.02 [0.02–0.03] |
Niger | 0.51 [0.45–0.57] | 0.23 [0.06–0.39] | 0.12 (23%) | 0.33 (143%) | 0.57 [0.46–0.69] |
Nigeria | 12.31 [10.91–13.70] | 15.00 [7.50–22.50] | 2.79 (23%) | 15 (100%) | 13.91 [11.04–16.72] |
Papua New Guinea | 16.91 [15.37–18.46] | 3.33 [0.83–5.82] | 3.09 (18%) | 4.99 (150%) | 21.32 [17.45–25.21] |
Perù | 108.39 [94.80–122.09] | 110.36 [55.18–165.54] | 27.29 (25%) | 110.36 (100%) | 93.41 [79.69–107.31] |
Philippines | 17.98 [16.00–19.96] | 23.63 [11.81–35.44] | 3.96 (22%) | 23.63 (100%) | 22.67 [18.16–27.10] |
Rwanda | 0.02 [0.02–0.02] | 0.23 [0.06–0.39] | <0.01 (22%) | 0.33 (143%) | 0.02 [0.02–0.03] |
Senegal | 2.97 [2.69–3.26] | 2.25 [1.58–2.93] | 0.57 (19%) | 1.35 (60%) | 3.36 [2.73–4.00] |
Sierra Leone | 0.23 [0.20–0.25] | 8.25 [4.13–12.38] | 0.06 (25%) | 8.25 (100%) | 0.25 [0.20–0.31] |
Somalia | 16.32 [14.85–17.77] | NoASGM | 2.92 (18%) | NO ASGM | 18.45 [15.08–21.79] |
South Africa | 44.98 [40.44–49.49] | 1.66 [0.42–2.91] | 9.05 (20%) | 2.49 (150%) | 50.83 [41.20–60.32] |
Sri Lanka | 4.61 [4.05–5.17] | NoASGM | 1.11 (24%) | NO ASGM | 5.81 [4.49–7.13] |
Sudan | 63.93 [55.12–72.85] | 62.25 [15.56–108.94] | 17.72 (28%) | 93.38 (150%) | 72.25 [56.19–88.42] |
Suriname | 29.68 [25.76–33.60] | 14.33 [10.03–18.63] | 7.84 (26%) | 8.6 (60%) | 25.58 [21.67–29.51] |
Tajikistan | 0.87 [0.75–0.98] | 3.00 [0.75–5.25] | 0.23 (26%) | 4.5 (150%) | 1.09 [0.86–1.33] |
Tanzania | 8.97 [8.02–9.92] | 26.25 [6.56–45.94] | 1.89 (21%) | 39.38 (150%) | 10.14 [8.24–12.05] |
Togo | 8.70 [7.78–9.61] | 3.00 [0.75–5.25] | 1.82 (21%) | 4.5 (150%) | 9.83 [7.90–11.76] |
Uganda | 0.49 [0.41–0.57] | 3.00 [0.75–5.25] | 0.16 (33%) | 4.5 (150%) | 0.55 [0.41–0.69] |
Uzbekistan | 0.21 [0.17–0.24] | 0.23 [0.06–0.39] | 0.07 (34%) | 0.24 (104%) | 0.26 [0.19–0.33] |
Venezuela | 8.08 [6.30–9.85] | 34.43 [17.21–51.64] | 3.55 (44%) | 34.43 (100%) | 6.96 [5.26–8.66] |
Zimbabwe | 4.78 [4.15–5.43] | 7.75 [3.88–11.63] | 1.28 (27%) | 7.75 (100%) | 5.40 [4.24–6.55] |
Country | LB | Mean | UB | LB | Mean | UB | LB | Mean | UB | LB | Mean | UB | LB | Mean | UB | LB | Mean | UB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Algeria | 0.09 | 0.11 | 0.13 | 0.03 | 0.04 | 0.04 | 0.07 | 0.08 | 0.10 | 0.12 | 0.15 | 0.17 | 0.05 | 0.06 | 0.07 | 0.00 | 0.01 | 0.01 |
Bolivia | 33.31 | 39.81 | 46.32 | 10.81 | 12.94 | 15.06 | 24.98 | 29.86 | 34.69 | 44.39 | 52.95 | 61.63 | 11.55 | 14.05 | 16.55 | 1.17 | 1.56 | 1.95 |
Brazil | 25.65 | 30.10 | 34.56 | 8.33 | 9.78 | 11.22 | 19.23 | 22.57 | 25.93 | 34.14 | 40.03 | 45.84 | 9.11 | 10.63 | 12.16 | 0.95 | 1.18 | 1.41 |
Burkina Faso | 5.06 | 5.58 | 6.10 | 1.65 | 1.81 | 1.98 | 3.79 | 4.19 | 4.58 | 6.73 | 7.43 | 8.13 | 2.75 | 3.01 | 3.26 | 0.30 | 0.33 | 0.37 |
Burundi | 0.44 | 0.55 | 0.66 | 0.14 | 0.18 | 0.22 | 0.33 | 0.41 | 0.50 | 0.58 | 0.73 | 0.88 | 0.21 | 0.30 | 0.39 | 0.02 | 0.03 | 0.05 |
Cameroon | 0.47 | 0.51 | 0.55 | 0.15 | 0.17 | 0.18 | 0.35 | 0.38 | 0.41 | 0.62 | 0.68 | 0.73 | 0.26 | 0.27 | 0.29 | 0.03 | 0.03 | 0.03 |
Chad | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 12.39 | 15.08 | 17.73 | 0.02 | 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Chile | 18.31 | 20.60 | 22.92 | 5.94 | 6.70 | 7.45 | 13.71 | 15.45 | 17.20 | 24.32 | 27.40 | 30.49 | 6.76 | 7.27 | 7.79 | 0.73 | 0.81 | 0.88 |
China | 251.51 | 280.20 | 308.92 | 81.85 | 91.06 | 100.31 | 188.79 | 210.15 | 231.47 | 335.37 | 372.66 | 410.38 | 162.85 | 176.20 | 189.72 | 17.68 | 19.58 | 21.49 |
Colombia | 75.94 | 85.89 | 95.93 | 24.66 | 27.91 | 31.16 | 56.92 | 64.42 | 71.88 | 101.09 | 114.23 | 127.34 | 28.92 | 30.32 | 31.73 | 3.22 | 3.37 | 3.52 |
Congo | 9.17 | 10.26 | 11.35 | 2.98 | 3.33 | 3.69 | 6.90 | 7.69 | 8.48 | 12.20 | 13.65 | 15.07 | 4.88 | 5.53 | 6.17 | 0.52 | 0.61 | 0.71 |
Côte d’Ivoire | 2.90 | 3.40 | 3.89 | 0.94 | 1.10 | 1.26 | 2.18 | 2.55 | 2.92 | 3.86 | 4.52 | 5.17 | 1.46 | 1.83 | 2.19 | 0.15 | 0.20 | 0.26 |
Ecuador | 23.33 | 26.46 | 29.60 | 7.61 | 8.60 | 9.60 | 17.53 | 19.85 | 22.20 | 31.08 | 35.20 | 39.32 | 8.82 | 9.34 | 9.87 | 0.97 | 1.04 | 1.10 |
Egypt | 2.23 | 2.65 | 3.07 | 0.72 | 0.86 | 1.00 | 1.67 | 1.99 | 2.30 | 2.96 | 3.52 | 4.08 | 1.10 | 1.43 | 1.75 | 0.11 | 0.16 | 0.21 |
El Salvador | 0.05 | 0.10 | 0.15 | 0.02 | 0.03 | 0.05 | 0.04 | 0.08 | 0.11 | 0.07 | 0.13 | 0.20 | 0.01 | 0.04 | 0.06 | 0.00 | 0.00 | 0.01 |
Equatorial Guinea | 0.37 | 0.41 | 0.45 | 0.12 | 0.13 | 0.14 | 0.28 | 0.31 | 0.34 | 0.49 | 0.54 | 0.59 | 0.20 | 0.22 | 0.24 | 0.02 | 0.02 | 0.03 |
Ethiopia | 0.14 | 0.17 | 0.21 | 0.05 | 0.06 | 0.07 | 0.11 | 0.13 | 0.15 | 0.19 | 0.23 | 0.27 | 0.07 | 0.09 | 0.12 | 0.01 | 0.01 | 0.01 |
Fiji | 0.32 | 0.35 | 0.39 | 0.10 | 0.11 | 0.13 | 0.24 | 0.26 | 0.29 | 0.42 | 0.47 | 0.51 | 0.20 | 0.22 | 0.24 | 0.02 | 0.02 | 0.03 |
French Guiana | 32.55 | 37.20 | 41.87 | 10.55 | 12.09 | 13.62 | 24.38 | 27.90 | 31.42 | 43.35 | 49.48 | 55.77 | 12.03 | 13.13 | 14.24 | 1.30 | 1.46 | 1.61 |
Ghana | 46.92 | 52.60 | 58.30 | 15.24 | 17.09 | 18.96 | 35.19 | 39.45 | 43.68 | 62.47 | 69.96 | 77.53 | 24.70 | 28.33 | 31.96 | 2.60 | 3.15 | 3.69 |
Guinea-Bissau | 20.80 | 23.73 | 26.63 | 6.77 | 7.71 | 8.66 | 15.64 | 17.79 | 19.97 | 27.74 | 31.56 | 35.37 | 10.83 | 12.78 | 14.71 | 1.13 | 1.42 | 1.71 |
Guyana | 21.49 | 24.52 | 27.55 | 6.98 | 7.97 | 8.96 | 16.12 | 18.39 | 20.68 | 28.58 | 32.61 | 36.67 | 7.76 | 8.66 | 9.56 | 0.83 | 0.96 | 1.10 |
Honduras | 0.40 | 0.45 | 0.50 | 0.13 | 0.15 | 0.16 | 0.30 | 0.34 | 0.38 | 0.54 | 0.60 | 0.67 | 0.15 | 0.16 | 0.17 | 0.02 | 0.02 | 0.02 |
Indonesia | 34.79 | 39.41 | 44.12 | 11.27 | 12.81 | 14.32 | 26.06 | 29.56 | 33.05 | 46.20 | 52.41 | 58.69 | 21.43 | 24.78 | 28.14 | 2.24 | 2.75 | 3.27 |
Kenya | 0.33 | 0.41 | 0.48 | 0.11 | 0.13 | 0.16 | 0.25 | 0.31 | 0.36 | 0.44 | 0.54 | 0.64 | 0.16 | 0.22 | 0.28 | 0.02 | 0.02 | 0.03 |
Kyrgyzstan | 2.90 | 3.23 | 3.56 | 0.94 | 1.05 | 1.16 | 2.18 | 2.42 | 2.67 | 3.86 | 4.30 | 4.74 | 1.86 | 2.03 | 2.20 | 0.20 | 0.23 | 0.25 |
Lao | 1.36 | 1.52 | 1.67 | 0.44 | 0.49 | 0.54 | 1.02 | 1.14 | 1.25 | 1.81 | 2.02 | 2.22 | 0.87 | 0.95 | 1.04 | 0.09 | 0.11 | 0.12 |
Liberia | 14.50 | 15.99 | 17.49 | 4.71 | 5.20 | 5.68 | 10.85 | 11.99 | 13.15 | 19.24 | 21.26 | 23.23 | 7.86 | 8.61 | 9.37 | 0.85 | 0.96 | 1.07 |
Madagascar | 0.09 | 0.13 | 0.18 | 0.03 | 0.04 | 0.06 | 0.06 | 0.10 | 0.14 | 0.12 | 0.18 | 0.24 | 0.03 | 0.07 | 0.11 | 0.00 | 0.01 | 0.01 |
Mali | 8.32 | 9.33 | 10.34 | 2.71 | 3.03 | 3.36 | 6.24 | 7.00 | 7.75 | 11.07 | 12.41 | 13.75 | 4.36 | 5.02 | 5.70 | 0.46 | 0.56 | 0.66 |
Mongolia | 4.42 | 5.11 | 5.79 | 1.44 | 1.66 | 1.88 | 3.33 | 3.83 | 4.34 | 5.90 | 6.80 | 7.70 | 2.68 | 3.21 | 3.74 | 0.28 | 0.36 | 0.44 |
Morocco | 2.20 | 2.50 | 2.79 | 0.71 | 0.81 | 0.91 | 1.65 | 1.87 | 2.10 | 2.93 | 3.32 | 3.71 | 1.38 | 1.57 | 1.76 | 0.14 | 0.17 | 0.20 |
Mozambique | 0.26 | 0.29 | 0.33 | 0.08 | 0.10 | 0.11 | 0.19 | 0.22 | 0.25 | 0.34 | 0.39 | 0.44 | 0.13 | 0.16 | 0.18 | 0.01 | 0.02 | 0.02 |
Myanmar | 15.60 | 17.34 | 19.09 | 5.07 | 5.63 | 6.20 | 11.69 | 13.00 | 14.33 | 20.74 | 23.06 | 25.37 | 10.09 | 10.90 | 11.72 | 1.10 | 1.21 | 1.32 |
Namibia | 0.04 | 0.05 | 0.05 | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 | 0.04 | 0.06 | 0.06 | 0.07 | 0.03 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 |
Nicaragua | 0.02 | 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Niger | 0.45 | 0.51 | 0.57 | 0.15 | 0.16 | 0.18 | 0.34 | 0.38 | 0.42 | 0.60 | 0.67 | 0.75 | 0.23 | 0.27 | 0.31 | 0.02 | 0.03 | 0.04 |
Nigeria | 10.91 | 12.31 | 13.70 | 3.56 | 4.00 | 4.44 | 8.21 | 9.23 | 10.25 | 14.56 | 16.37 | 18.18 | 5.78 | 6.63 | 7.48 | 0.61 | 0.74 | 0.86 |
Papua New Guinea | 15.37 | 16.91 | 18.46 | 4.99 | 5.50 | 6.00 | 11.51 | 12.68 | 13.85 | 20.42 | 22.49 | 24.57 | 9.91 | 10.64 | 11.38 | 1.08 | 1.18 | 1.28 |
Perù | 94.80 | 108.39 | 122.09 | 30.80 | 35.23 | 39.63 | 71.17 | 81.29 | 91.33 | 126.50 | 144.16 | 162.07 | 34.21 | 38.26 | 42.27 | 3.65 | 4.25 | 4.86 |
Philippines | 16.00 | 17.98 | 19.96 | 5.21 | 5.84 | 6.49 | 12.01 | 13.48 | 14.95 | 21.23 | 23.91 | 26.57 | 9.96 | 11.31 | 12.65 | 1.06 | 1.26 | 1.46 |
Rwanda | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 |
Senegal | 2.69 | 2.97 | 3.26 | 0.87 | 0.97 | 1.06 | 2.02 | 2.23 | 2.45 | 3.57 | 3.95 | 4.34 | 1.45 | 1.60 | 1.75 | 0.16 | 0.18 | 0.20 |
Sierra Leone | 0.20 | 0.23 | 0.25 | 0.06 | 0.07 | 0.08 | 0.15 | 0.17 | 0.19 | 0.26 | 0.30 | 0.34 | 0.10 | 0.12 | 0.14 | 0.01 | 0.01 | 0.02 |
Somalia | 14.85 | 16.32 | 17.77 | 4.82 | 5.30 | 5.79 | 11.14 | 12.24 | 13.35 | 19.75 | 21.71 | 23.67 | 8.13 | 8.79 | 9.44 | 0.88 | 0.98 | 1.07 |
South Africa | 40.44 | 44.98 | 49.49 | 13.13 | 14.62 | 16.10 | 30.33 | 33.74 | 37.12 | 53.73 | 59.82 | 65.84 | 21.48 | 24.22 | 26.94 | 2.28 | 2.69 | 3.10 |
Sri Lanka | 4.05 | 4.61 | 5.17 | 1.32 | 1.50 | 1.68 | 3.05 | 3.46 | 3.87 | 5.40 | 6.13 | 6.87 | 2.60 | 2.90 | 3.21 | 0.28 | 0.32 | 0.37 |
Sudan | 55.12 | 63.93 | 72.85 | 17.90 | 20.78 | 23.70 | 41.26 | 47.95 | 54.65 | 73.11 | 85.03 | 97.01 | 27.88 | 34.43 | 40.94 | 2.80 | 3.83 | 4.85 |
Suriname | 25.76 | 29.68 | 33.60 | 8.35 | 9.65 | 10.92 | 19.30 | 22.26 | 25.25 | 34.22 | 39.48 | 44.76 | 9.19 | 10.48 | 11.78 | 0.97 | 1.16 | 1.36 |
Tajikistan | 0.75 | 0.87 | 0.98 | 0.25 | 0.28 | 0.32 | 0.57 | 0.65 | 0.73 | 1.00 | 1.15 | 1.30 | 0.46 | 0.54 | 0.63 | 0.05 | 0.06 | 0.07 |
Tanzania | 8.02 | 8.97 | 9.92 | 2.61 | 2.92 | 3.23 | 6.01 | 6.73 | 7.45 | 10.65 | 11.94 | 13.22 | 4.22 | 4.83 | 5.45 | 0.44 | 0.54 | 0.63 |
Togo | 7.78 | 8.70 | 9.61 | 2.53 | 2.83 | 3.12 | 5.84 | 6.52 | 7.20 | 10.34 | 11.57 | 12.78 | 4.16 | 4.68 | 5.22 | 0.44 | 0.52 | 0.60 |
Uganda | 0.41 | 0.49 | 0.57 | 0.13 | 0.16 | 0.18 | 0.31 | 0.37 | 0.43 | 0.54 | 0.65 | 0.76 | 0.20 | 0.26 | 0.33 | 0.02 | 0.03 | 0.04 |
Uzbekistan | 0.17 | 0.21 | 0.24 | 0.06 | 0.07 | 0.08 | 0.13 | 0.16 | 0.18 | 0.23 | 0.28 | 0.32 | 0.10 | 0.13 | 0.16 | 0.01 | 0.01 | 0.02 |
Venezuela | 6.30 | 8.08 | 9.85 | 2.05 | 2.62 | 3.20 | 4.70 | 6.06 | 7.41 | 8.40 | 10.74 | 13.06 | 2.03 | 2.85 | 3.67 | 0.19 | 0.32 | 0.44 |
Zimbabwe | 4.15 | 4.78 | 5.43 | 1.35 | 1.55 | 1.76 | 3.12 | 3.59 | 4.05 | 5.53 | 6.36 | 7.20 | 2.11 | 2.57 | 3.04 | 0.22 | 0.29 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, D.E.; De Simone, F.; Cinnirella, S.; Hedgecock, I.M.; D’Amore, F.; Pirrone, N. Reducing Mercury Emission Uncertainty from Artisanal and Small-Scale Gold Mining Using Bootstrap Confidence Intervals: An Assessment of Emission Reduction Scenarios. Atmosphere 2023, 14, 62. https://doi.org/10.3390/atmos14010062
Bruno DE, De Simone F, Cinnirella S, Hedgecock IM, D’Amore F, Pirrone N. Reducing Mercury Emission Uncertainty from Artisanal and Small-Scale Gold Mining Using Bootstrap Confidence Intervals: An Assessment of Emission Reduction Scenarios. Atmosphere. 2023; 14(1):62. https://doi.org/10.3390/atmos14010062
Chicago/Turabian StyleBruno, Delia Evelina, Francesco De Simone, Sergio Cinnirella, Ian Michael Hedgecock, Francesco D’Amore, and Nicola Pirrone. 2023. "Reducing Mercury Emission Uncertainty from Artisanal and Small-Scale Gold Mining Using Bootstrap Confidence Intervals: An Assessment of Emission Reduction Scenarios" Atmosphere 14, no. 1: 62. https://doi.org/10.3390/atmos14010062
APA StyleBruno, D. E., De Simone, F., Cinnirella, S., Hedgecock, I. M., D’Amore, F., & Pirrone, N. (2023). Reducing Mercury Emission Uncertainty from Artisanal and Small-Scale Gold Mining Using Bootstrap Confidence Intervals: An Assessment of Emission Reduction Scenarios. Atmosphere, 14(1), 62. https://doi.org/10.3390/atmos14010062