Numerical Study on Storm Surge Level Including Astronomical Tide Effect Using Data Assimilation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Typhoons and Stations
2.2. Coupled Tide-Surge Numerical Model and Adjoint Assimilation Model
2.3. Wind Drag Coefficient
2.4. Experimental Designs, Model Setting and Model Verification
2.4.1. Experimental Designs
2.4.2. Model Setting
2.4.3. Model Verification
3. Results and Discussion
3.1. Impact of the Initial Values of a and b on Pure Storm Surge Model
3.2. Spatial Distribution of Wind Drag Coefficients during Typhoons 7203 and 7303
3.3. Influence of the Way of Calculating Wind Drag Coefficient on the Pure Storm Surge Level
3.4. Influence of the Astronomical Tide on the Storm Surge Level
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, J.G.; Fulcher, C.W.; Luettich, R.A.; Estrade, B.D.; Allen, G.D.; Winer, H.S. A real time storm surge forecasting system using ADCIRC. In Estuarine and Coastal Modeling; ASCE: Reston, VA, USA, 2007; pp. 893–912. [Google Scholar]
- Dietrich, J.C.; Zijlema, M.; Westerink, J.J.; Holthuijsen, L.H.; Dawson, C.; Luettich, R.A., Jr.; Jensen, R.E.; Smith, J.M.; Stelling, G.S.; Stone, G.W. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 2011, 58, 45–65. [Google Scholar] [CrossRef]
- Maspataud, A.; Ruz, M.H.; Vanhée, S. Potential impacts of extreme storm surges on a low-lying densely populated coastline: The case of Dunkirk area, Northern France. Nat. Hazards 2013, 66, 1327–1343. [Google Scholar] [CrossRef]
- Olbert, A.I.; Nash, S.; Cunnane, C.; Hartnett, M. Tide-surge interactions and their effects on total sea levels on total sea level in Irish coastal waters. Ocean Dyn. 2013, 63, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.L.; Zhang, Y.H.; Cao, A.Z.; Liu, Q.; Lv, X.Q. Effects of tide-surge interactions on storm surges along the coast of the Bohai Sea, Yellow Sea, and East China Sea. Sci. China Earth Sci. 2016, 59, 1308–1316. [Google Scholar] [CrossRef]
- Chu, D.D.; Zhang, J.C.; Wu, Y.S.; Jiao, X.H.; Qian, S.H. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea. Estuar. Coast Shelf Sci. 2019, 231, 106460. [Google Scholar] [CrossRef]
- Du, M.; Hou, Y.J.; Hu, P.; Wang, K. Effects of typhoon paths on storm surge and coastal inundation in the Pearl River Estuary, China. Remote Sens. 2020, 12, 1851. [Google Scholar] [CrossRef]
- Guo, Y.X.; Hou, Y.J.; Liu, z.; Du, M. Risk prediction of coastal hazards induced by typhoon: A case study in the coastal region of Shenzhen, China. Remote Sens. 2020, 12, 1731. [Google Scholar] [CrossRef]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Change 2012, 2, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Haigh, I.D.; Wijeratne, E.M.S.; MacPherson, L.R.; Pattiaratchi, C.B.; Mason, M.S.; Crompton, R.P.; George, S. Estimating present day extreme water level exceedance probabilities around the coastline of Australia: Tides, extra-tropical storm surges and mean sea level. Clim. Dyn. 2014, 42, 121–138. [Google Scholar] [CrossRef]
- Chen, W.B.; Chen, H.; Hisao, S.C.; Chang, C.H.; Lin, L.Y. Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Eng. 2019, 188, 106260. [Google Scholar] [CrossRef]
- He, Z.G.; Tang, Y.L.; Xia, Y.Z.; Chen, B.D.; Xu, J.; Yu, Z.Z.; Li, L. Interaction impacts of tides, waves and winds on storm surge in a channel-island system: Observational and numerical study in Yangshan Harbor. Ocean Dynam. 2020, 70, 307–325. [Google Scholar] [CrossRef]
- Hisao, S.C.; Chen, H.; Wu, H.L.; Chen, W.B.; Chang, C.H.; Guo, W.D.; Chen, Y.M.; Lin, L.Y. Numerical simulation of large wave heights from super Typhoon Neparktak (2016) in the Eastern waters of Taiwan. J. Mar. Sci. Eng. 2020, 8, 217. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.L. Neural network prediction of a storm surge. Ocean Eng. 2006, 33, 483–494. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Gayathri, S.; Lee, T.L. Support vector regression methodology for storm surge predictions. Ocean Eng. 2008, 35, 1578–1587. [Google Scholar] [CrossRef]
- Nunno, F.D.; Granata, F.; Gargano, R.; Marinis, G. Forecasting of extreme storm tide events using NARX neural network-based models. Atmosphere 2021, 12, 512. [Google Scholar] [CrossRef]
- Granata, F.; Nunno, F.D. Artificial Intelligence models for prediction of the tide level in Venice. Stoch. Environ. Res. Risk Assess. 2021, 35, 2537–2548. [Google Scholar] [CrossRef]
- Lee, J.W.; Irish, J.L.; Bensi, M.T.; Marcy, D.C. Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning. Coast. Eng. 2021, 170, 104024. [Google Scholar] [CrossRef]
- Smith, S.D. Wind stress and heat flux over the ocean in Gale force winds. J. Phys. Oceangr. 1980, 10, 709–726. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceangr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res.-Oceans 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- Geernaert, G.L.; Large, S.E.; Hansen, F. Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res. Ocean. 1987, 92, 13127–13139. [Google Scholar] [CrossRef]
- Yelland, M.; Taylor, P.K. Wind stress measurements from the open ocean. J. Phys. Oceangr. 1996, 26, 541–558. [Google Scholar] [CrossRef]
- Jarosz, E.; Mitchell, D.A.; Wang, D.W.; Teague, W.J. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science 2007, 315, 1707–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijlema, M.; Van Vledder, G.P.; Holthuijsen, L.H. Bottom friction and wind drag for wave models. Coast Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- Zhao, Z.K.; Liu, C.X.; Li, Q.; Dai, G.F.; Song, Q.T.; Lv, W.H. Typhoon air-sea drag coefficient in coastal regions. J. Geophys. Res. Ocean. 2015, 120, 716–727. [Google Scholar] [CrossRef]
- Cao, H.Q.; Zhou, L.M.; Li, S.Q.; Wang, Z.F. Observation and numerical experiments for drag coefficient under typhoon wind forcing. J. Ocean Univ. China 2017, 16, 35–41. [Google Scholar] [CrossRef]
- Zou, Z.S.; Zhao, D.L.; Tian, J.W.; Liu, B.; Huang, J. Drag coefficient derived from ocean current and temperature profiles at high wind speeds. Tellus A 2018, 70, 1463805. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, C.; Brett, M.T.; Nielsen, J.M. The importance of the wind-drag coefficient parameterization for hydrodynamic modeling of a large shallow lake. Ecol. Inform. 2020, 59, 101106. [Google Scholar] [CrossRef]
- Mel, R.A.; Viero, D.P.; Carniello, L.; Defina, A.; D’Alpaos, L. The first operations of Mo.S.E. System to prevent the flooding of Venice: Insights on the hydrodynamics of a regulated lagoon. Estuar. Coast Shelf Sci. 2021, 261, 107547. [Google Scholar] [CrossRef]
- Shankar, C.G.; Behera, M.R. Improved wind drag formulation for numerical storm wave and surge modeling. Dynam. Atmos. Ocean. 2021, 93, 101193. [Google Scholar] [CrossRef]
- Garratt, J.R. Review of drag coefficients over oceans and continents. Mon. Weather Rev. 1977, 105, 915–929. [Google Scholar] [CrossRef]
- He, Y.J.; Lu, X.Q.; Qiu, Z.F.; Zhao, J.P. Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/POSEIDON altimeter data. Cont. Shelf Res. 2004, 24, 1521–1529. [Google Scholar] [CrossRef]
- Lionello, P.; Sanna, A.; Elvini, E.; Mufato, R. A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea. Cont. Shelf Res. 2006, 26, 539–553. [Google Scholar] [CrossRef]
- Peng, S.Q.; Xie, L.A. Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting. Ocean Model. 2006, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.Q.; Xie, L.A.; Pietrafesa, L.J. Correcting the errors in the initial conditions and wind stress in storm surge simulation using an adjoint optimal technique. Ocean Model. 2007, 18, 175–193. [Google Scholar] [CrossRef]
- Fan, L.L.; Liu, M.M.; Chen, H.B.; Lv, X.Q. Numerical study on the spatially varying drag coefficient in simulation of storm surges employing the adjoint method. J. Oceanol. Limnol. 2011, 29, 702–717. [Google Scholar] [CrossRef]
- Zhang, J.C.; Lu, X.Q.; Wang, P.; Wang, Y.P. Study on linear and nonlinear bottom friction parameterizations for regional tidal models using data assimilation. Cont. Shelf Res. 2011, 31, 555–573. [Google Scholar] [CrossRef]
- Li, Y.N.; Peng, S.Q.; Yan, J.; Xie, L.A. On improving storm surge forecasting using an adjoint optimal technique. Ocean Model. 2013, 72, 185–197. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Mayerl, R.; Wang, Y.B.; Zhang, H. Study of the wind drag coefficient during the storm Xaver in the German Bight using data assimilation. Dynam. Atmos. Ocean. 2018, 83, 64–74. [Google Scholar] [CrossRef]
- Xu, J.L.; Nie, Y.L.; Ma, K.; Shi, W.Q.; Lv, X.Q. Assimilation research of wind stress drag coefficient based on the linear expression. J. Mar. Sci. Eng. 2021, 9, 1135. [Google Scholar] [CrossRef]
- Jelesnianski, C.P. A numerical calculation of storm tides included by a tropical storm impinging on a continental shelf. Mon. Weather Rev. 1965, 93, 343–358. [Google Scholar] [CrossRef]
- Guan, C.L.; Xie, L.A. On the linear parameterization of drag coefficient over sea surface. J. Phys. Oceangr. 2004, 34, 2847–2851. [Google Scholar] [CrossRef]
- Lu, X.Q.; Zhang, J.C. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Cont. Shelf Res. 2006, 26, 1905–1923. [Google Scholar] [CrossRef]
- Fang, G.H.; Kwok, Y.K.; Yu, K.J.; Zhu, Y.H. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res. 1999, 19, 845–869. [Google Scholar] [CrossRef]
- Moon, I.J.; Kwon, J.I.; Lee, J.C.; Shim, J.S.; Kang, S.K.; Oh, I.S.; Kwon, S.J. Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Model. 2009, 29, 115–127. [Google Scholar] [CrossRef]
Local Standard Time (yyyymmddhh) | Lon (°E) | Lat (°N) | Pressure (hPa) | Wind (m/s) |
---|---|---|---|---|
1972072508 | 128.0 | 28.2 | 957.0 | 35.0 |
1972072514 | 127.7 | 29.2 | 957.0 | 35.0 |
1972072520 | 126.8 | 30.6 | 960.0 | 35.0 |
1972072602 | 126.0 | 32.0 | 965.0 | 30.0 |
1972072608 | 125.4 | 33.8 | 970.0 | 30.0 |
1972072614 | 123.1 | 36.8 | 970.0 | 30.0 |
1972072620 | 120.6 | 38.1 | 975.0 | 30.0 |
1972072702 | 119.2 | 38.8 | 975.0 | 25.0 |
1972072708 | 117.5 | 38.9 | 980.0 | 20.0 |
1972072714 | 116.6 | 39.9 | 990.0 | 15.0 |
1972072720 | 114.2 | 40.7 | 998.0 | 10.0 |
1972072802 | 112.1 | 41.9 | 998.0 | 10.0 |
1972072808 | 110.3 | 42.5 | 1000.0 | 10.0 |
Local Standard Time (yyyymmddhh) | Lon (°E) | Lat (°N) | Pressure (hPa) | Wind (m/s) |
---|---|---|---|---|
1973071802 | 125.4 | 30.4 | 960.0 | 40.0 |
1973071808 | 125.1 | 31.5 | 965.0 | 40.0 |
1973071814 | 124.5 | 32.6 | 970.0 | 35.0 |
1973071820 | 123.4 | 33.7 | 975.0 | 30.0 |
1973071902 | 122.4 | 34.4 | 980.0 | 25.0 |
1973071908 | 121.9 | 35.2 | 980.0 | 25.0 |
1973071914 | 121.5 | 36.1 | 980.0 | 25.0 |
1973071920 | 121.1 | 37.4 | 984.0 | 15.0 |
1973072002 | 120.7 | 40.3 | 985.0 | 12.0 |
1973072008 | 120.8 | 42.7 | 990.0 | 12.0 |
Experiments | a | b | Data Assimilation | four Constituents (M2, S2, K1, O1) |
---|---|---|---|---|
E1 | 0 | 0 | √ | × |
E2 | 0.61 | 0.063 | √ | × |
E3 | 0.577 | 0.085 | √ | × |
E4 | 0.61 | 0.085 | √ | × |
E5 | 0.8 | 0.065 | √ | × |
E6 | Cd = 0.0026 | √ | × | |
E7 | 0.8 | 0.065 | × | × |
E8 | 0.61 | 0.085 | × | × |
E9 | 0.8 | 0.065 | √ | √ |
7203 | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Mean | ||||||||
E1 | 5.9 | 6.0 | 6.1 | 9.4 | 10.4 | 22.2 | 23.0 | 30.7 | 16.9 | 19.7 | 17.3 | 15.2 | 15.2 | |||||||||
E2 | 5.3 | 5.9 | 4.8 | 6.9 | 6.7 | 17.7 | 19.1 | 18.8 | 11.3 | 12.7 | 13.3 | 12.9 | 11.3 | |||||||||
E3 | 5.3 | 5.9 | 4.7 | 6.9 | 6.7 | 17.4 | 20.4 | 17.8 | 10.4 | 13.0 | 13.8 | 13.2 | 11.3 | |||||||||
E4 | 5.3 | 5.9 | 4.6 | 6.6 | 6.7 | 17.3 | 20.5 | 17.8 | 10.4 | 13.0 | 13.8 | 13.1 | 11.3 | |||||||||
E5 | 5.2 | 5.9 | 4.7 | 6.7 | 6.6 | 17.3 | 20.1 | 18.0 | 10.9 | 12.7 | 13.4 | 12.8 | 11.2 | |||||||||
7303 | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean | |||||||||||
E1 | 8.0 | 6.0 | 9.7 | 12.4 | 15.6 | 13.4 | 28.0 | 32.2 | 40.3 | 18.4 | ||||||||||||
E2 | 8.1 | 5.7 | 6.0 | 6.7 | 9.4 | 13.1 | 25.2 | 31.4 | 39.8 | 16.1 | ||||||||||||
E3 | 8.0 | 5.4 | 5.6 | 7.0 | 9.6 | 13.5 | 24.6 | 31.7 | 40.3 | 16.2 | ||||||||||||
E4 | 7.9 | 5.6 | 5.8 | 7.2 | 9.4 | 13.1 | 25.0 | 32.1 | 40.2 | 16.2 | ||||||||||||
E5 | 8.0 | 5.5 | 5.7 | 6.8 | 9.5 | 13.1 | 24.8 | 30.9 | 39.4 | 16.0 |
Tidal Stations | 7203 | 7303 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E1 | E2 | E3 | E4 | E5 | |
DaLian | 27.1 | 18.2 | 18.1 | 17.9 | 18.0 | 39.2 | 35.1 | 35.4 | 35.6 | 34.8 |
YingKou | 15.4 | 10.5 | 10.0 | 10.0 | 10.3 | 17.8 | 17.9 | 17.9 | 17.8 | 17.5 |
HuLuDao | 17.3 | 12.1 | 11.8 | 11.8 | 12.0 | 22.0 | 23.3 | 24.0 | 23.9 | 23.2 |
QinHuangDao | 17.1 | 10.9 | 11.1 | 11.2 | 11.1 | 22.2 | 21.6 | 22.3 | 22.3 | 21.5 |
LongKou | 13.7 | 9.0 | 8.5 | 8.5 | 8.4 | 26.1 | 23.9 | 24.0 | 24.3 | 23.4 |
YanTai | 22.9 | 17.4 | 17.3 | 17.2 | 17.1 | 14.6 | 13.8 | 14.0 | 14.0 | 13.7 |
RuShan | 10.9 | 10.3 | 10.5 | 10.6 | 10.3 | 20.0 | 18.5 | 17.1 | 17.1 | 18.4 |
QingDao | 15.7 | 12.9 | 13.0 | 13.0 | 12.9 | 12.7 | 9.9 | 9.6 | 10.0 | 9.6 |
ShiJiuSuo | 11.9 | 9.1 | 10.1 | 10.1 | 9.8 | 12.2 | 9.2 | 8.8 | 9.1 | 8.8 |
LianYunGang | 10.5 | 9.7 | 10.1 | 9.9 | 9.8 | 15.8 | 14.1 | 14.0 | 14.5 | 13.8 |
Mean | 16.3 | 12.0 | 12.1 | 12.0 | 12.0 | 20.3 | 18.7 | 18.7 | 18.9 | 18.5 |
7203 at LongKou tidal station | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Mean | ||||||||
E1 | 100 | 135 | 9 | 43 | 35 | 31 | 25 | 26 | 78 | 21 | 37 | 171 | 59 | |||||||||
E2 | 100 | 100 | 10 | 27 | 36 | 21 | 12 | 20 | 36 | 9 | 17 | 95 | 40 | |||||||||
E3 | 100 | 102 | 10 | 22 | 36 | 21 | 9 | 16 | 31 | 8 | 17 | 146 | 43 | |||||||||
E4 | 100 | 99 | 10 | 22 | 35 | 23 | 9 | 17 | 31 | 8 | 16 | 148 | 43 | |||||||||
E5 | 100 | 100 | 10 | 21 | 23 | 21 | 10 | 17 | 33 | 8 | 14 | 122 | 40 | |||||||||
7303 at ShiJiuSuo tidal station | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean | |||||||||||
E1 | 100 | 43 | 1 | 22 | 25 | 22 | 33 | 31 | 40 | 35 | ||||||||||||
E2 | 100 | 35 | 4 | 28 | 19 | 24 | 16 | 20 | 14 | 29 | ||||||||||||
E3 | 100 | 35 | 7 | 28 | 13 | 20 | 25 | 3 | 25 | 28 | ||||||||||||
E4 | 100 | 35 | 7 | 25 | 15 | 24 | 26 | 14 | 28 | 30 | ||||||||||||
E5 | 100 | 28 | 11 | 28 | 12 | 19 | 20 | 17 | 14 | 28 |
7203 | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Mean | ||||||||
E5 | 5.2 | 5.9 | 4.7 | 6.7 | 6.6 | 17.3 | 20.1 | 18.0 | 10.9 | 12.7 | 13.4 | 12.8 | 11.2 | |||||||||
E6 | 7.2 | 7.8 | 5.8 | 6.2 | 6.1 | 18.9 | 24.6 | 15.2 | 17.7 | 23.9 | 17.0 | 12.7 | 13.6 | |||||||||
E7 | 15.5 | 11.2 | 13.4 | 16.7 | 18.0 | 52.5 | 55.5 | 33.7 | 26.2 | 29.2 | 29.4 | 27.0 | 27.4 | |||||||||
E8 | 15.6 | 11.2 | 13.2 | 16.4 | 18.0 | 54.0 | 60.2 | 33.6 | 25.3 | 30.3 | 30.6 | 28.7 | 28.1 | |||||||||
7303 | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean | |||||||||||
E5 | 8.0 | 5.5 | 5.7 | 6.8 | 9.5 | 13.1 | 24.8 | 30.9 | 39.4 | 16.0 | ||||||||||||
E6 | 10.3 | 22.8 | 9.7 | 13.0 | 11.9 | 21.0 | 21.0 | 18.4 | 43.2 | 19.0 | ||||||||||||
E7 | 14.9 | 18.4 | 21.5 | 14.9 | 24.4 | 13.3 | 29.1 | 48.9 | 76.5 | 29.1 | ||||||||||||
E8 | 14.8 | 18.5 | 20.6 | 15.8 | 25.0 | 14.3 | 28.1 | 49.1 | 77.5 | 29.3 |
Tidal Stations | 7203 | 7303 | ||||||
---|---|---|---|---|---|---|---|---|
E5 | E6 | E7 | E8 | E5 | E6 | E7 | E8 | |
DaLian | 18.0 | 12.9 | 32.0 | 31.7 | 34.8 | 21.4 | 48.5 | 48.6 |
YingKou | 10.3 | 11.7 | 42.4 | 44.3 | 17.5 | 21.5 | 44.9 | 46.0 |
HuLuDao | 12.0 | 10.7 | 41.2 | 42.9 | 23.2 | 22.6 | 44.4 | 45.4 |
QinHuangDao | 11.1 | 8.7 | 32.5 | 35.7 | 21.5 | 33.8 | 40.6 | 41.6 |
LongKou | 8.4 | 16.3 | 27.1 | 26.4 | 23.4 | 16.2 | 35.2 | 35.5 |
YanTai | 17.1 | 24.8 | 33.2 | 34.5 | 13.7 | 16.4 | 33.5 | 33.2 |
RuShan | 10.3 | 6.7 | 22.8 | 24.1 | 18.4 | 23.8 | 25.5 | 24.7 |
QingDao | 12.9 | 15.8 | 20.0 | 20.8 | 9.6 | 10.8 | 15.2 | 14.7 |
ShiJiuSuo | 9.8 | 13.6 | 19.4 | 20.2 | 8.8 | 9.6 | 16.6 | 16.0 |
LianYunGang | 9.8 | 21.0 | 26.0 | 26.7 | 13.8 | 26.5 | 29.1 | 28.5 |
Mean | 12.0 | 14.2 | 29.7 | 30.7 | 18.5 | 20.3 | 33.4 | 33.4 |
7203 | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Mean | ||||||||
E5 | 5.2 | 5.9 | 4.7 | 6.7 | 6.6 | 17.3 | 20.1 | 18.0 | 10.9 | 12.7 | 13.4 | 12.8 | 11.2 | |||||||||
E9 | 5.2 | 6.0 | 4.6 | 6.9 | 6.4 | 16.6 | 19.4 | 15.3 | 10.5 | 10.2 | 9.2 | 9.9 | 10.0 | |||||||||
7303 | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean | |||||||||||
E5 | 8.0 | 5.5 | 5.7 | 6.8 | 9.5 | 13.1 | 24.8 | 30.9 | 39.4 | 16.0 | ||||||||||||
E9 | 8.3 | 5.7 | 6.3 | 9.2 | 10.3 | 13.7 | 18.6 | 26.6 | 32.8 | 14.6 |
Tidal Stations | 7203 | 7303 | ||
---|---|---|---|---|
E5 | E9 | E5 | E9 | |
DaLian | 18.0 | 15.1 | 34.8 | 28.3 |
YingKou | 10.3 | 8.2 | 17.5 | 13.6 |
HuLuDao | 12.0 | 10.3 | 23.2 | 18.2 |
QinHuangDao | 11.1 | 9.7 | 21.5 | 18.2 |
LongKou | 8.4 | 8.6 | 23.4 | 19.0 |
YanTai | 17.1 | 14.6 | 13.7 | 11.8 |
RuShan | 10.3 | 8.8 | 18.4 | 15.2 |
QingDao | 12.9 | 10.6 | 9.6 | 10.7 |
ShiJiuSuo | 9.8 | 10.2 | 8.8 | 12.2 |
LianYunGang | 9.8 | 11.1 | 13.8 | 17.5 |
Mean | 12.0 | 10.7 | 18.5 | 16.5 |
7203 at RuShan tidal station | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Mean | |||||||||
E5 | 100 | 203 | 2 | 112 | 173 | 7 | 69 | 98 | 13 | 18 | 23 | 39 | 71 | ||||||||||
E9 | 100 | 203 | 0 | 96 | 30 | 3 | 5 | 57 | 12 | 19 | 31 | 4 | 47 | ||||||||||
7303 at RuShan tidal station | Exp | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean | ||||||||||||
E5 | 100 | 171 | 15 | 7 | 25 | 21 | 34 | 42 | 93 | 56 | |||||||||||||
E9 | 100 | 213 | 0.2 | 4 | 18 | 4 | 18 | 10 | 59 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Ma, K.; Nie, Y.; Liu, C.; Bi, X.; Shi, W.; Lv, X. Numerical Study on Storm Surge Level Including Astronomical Tide Effect Using Data Assimilation Method. Atmosphere 2023, 14, 38. https://doi.org/10.3390/atmos14010038
Xu J, Ma K, Nie Y, Liu C, Bi X, Shi W, Lv X. Numerical Study on Storm Surge Level Including Astronomical Tide Effect Using Data Assimilation Method. Atmosphere. 2023; 14(1):38. https://doi.org/10.3390/atmos14010038
Chicago/Turabian StyleXu, Junli, Kai Ma, Yuling Nie, Chuanyu Liu, Xin Bi, Wenqi Shi, and Xianqing Lv. 2023. "Numerical Study on Storm Surge Level Including Astronomical Tide Effect Using Data Assimilation Method" Atmosphere 14, no. 1: 38. https://doi.org/10.3390/atmos14010038
APA StyleXu, J., Ma, K., Nie, Y., Liu, C., Bi, X., Shi, W., & Lv, X. (2023). Numerical Study on Storm Surge Level Including Astronomical Tide Effect Using Data Assimilation Method. Atmosphere, 14(1), 38. https://doi.org/10.3390/atmos14010038