Climate Indicators of Landslide Risks on Alaska National Park Road Corridors
Abstract
:1. Introduction
2. Data and Methods
2.1. Climate Indicators
2.2. Station Observations
2.3. Reanalysis and Downscaled Climate Model Data
2.4. Methods
3. Results
3.1. Historical ERA5 Climatology and Climate Model Bias (1981–2020)
3.2. Gates of the Arctic
3.3. Denali
3.4. Wrangell-St. Elias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Park Service. Pretty Rocks Landslide. Available online: https://www.nps.gov/dena/learn/nature/pretty-rocks.htm (accessed on 29 July 2022).
- Department of the Interior. Bipartisan Infrastructure Law to Fund Critical Transportation Project in Denali National Park. Available online: https://www.doi.gov/pressreleases/bipartisan-infrastructure-law-fund-critical-transportation-project-denali-national (accessed on 14 September 2022).
- Alaska Public Media. McCarthy Road Reopened after Being Rocked by Mudslide. Available online: https://alaskapublic.org/2018/08/22/mccarthy-road-reopened-after-being-rocked-by-mudslide/ (accessed on 29 July 2022).
- National Park Service. United States Department of the Interior National Park Service Ambler Mining District Industrial Access Project Gates of the Arctic National Park and Preserve Environmental and Economic Analysis. Available online: https://parkplanning.nps.gov/document.cfm?parkID=11&projectID=37092&documentID=105431 (accessed on 6 September 2022).
- Gonzalez, P.; Wang, F.; Notaro, M.; Vimont, D.J.; Williams, J.W. Disproportionate Magnitude of Climate Change in United States National Parks. Environ. Res. Lett. 2018, 13, 104001. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.K.; Sousanes, P.J.; Hill, K. Increased Mean Annual Temperatures in 2014–2019 Indicate Permafrost Thaw in Alaskan National Parks. Arct. Antarct. Alp. Res. 2021, 53, 1–19. [Google Scholar] [CrossRef]
- Bissolli, P.; Ganter, C.; Mekonnen, A.; Sánchez-Lugo, A.; Zhu, Z.; Abida, A.; Agyakwah, W.; Aldeco, L.S.; Alfaro, E.J.; Allen, T.; et al. Regional Climates. Bull. Am. Meteorol. Soc. 2022, 103, S341–S454. [Google Scholar] [CrossRef]
- Thoman, R.; Walsh, J.E. Alaska’s Changing Environment: Documenting Alaska’s Physical and Biological Changes through Observations. Available online: https://uaf-iarc.org/our-work/alaskas-changing-environment/ (accessed on 28 August 2022).
- Markon, C.; Gray, S.; Berman, M.; Eerkes-Medrano, L.; Hennessy, T.; Huntington, H.P.; Littell, J.; McCammon, M.; Thoman, R.; Trainor, S.F. Chapter 26: Alaska. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II. [Google Scholar]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic Has Warmed Nearly Four Times Faster than the Globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Ballinger, T.J. NOAA Arctic Report Card 2021: Surface Air Temperature; NOAA: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Panda, S.; Romanovksy, V.; Marchenko, S. High-Resolution Permafrost Modeling in the Arctic Network National Parks, Preserves and Monuments. Natural Resource Report NPS/ARCN/NRR-2016/1366. National Park Service. Fort Collins, CO. Available online: https://irma.nps.gov/DataStore/DownloadFile/563790 (accessed on 28 August 2022).
- Panda, S.; Marchenko, S.; Romanovksy, V. High-Resolution Permafrost Modeling in Denali National Park and Preserve. Natural Resource Technical Report NPS/CAKN/NRTR-2014/858. National Park Service, Fort Collins, Colorado. Available online: https://irma.nps.gov/DataStore/DownloadFile/492958 (accessed on 28 August 2022).
- Panda, S.; Marchenko, S.; Romanovksy, V. High-Resolution Permafrost Modeling in Wrangell-St. Elias National Park and Preserve. Natural Resource Technical Report NPS/CAKN/NRTR-2014/861. National Park Service, Fort Collins, Colorado. Available online: https://irma.nps.gov/DataStore/DownloadFile/493136 (accessed on 28 August 2022).
- Blunden, J.; Arndt, D.S. State of the Climate in 2018. Bull. Am. Meteorol. Soc. 2019, 100, Si-S306. [Google Scholar] [CrossRef] [Green Version]
- Larsen, P.; Goldsmith, S.; Smith, O.; Wilson, M.; Strzepek, K.; Chinowsky, P.; Saylor, B. Estimating Future Costs for Alaska Public Infrastructure at Risk from Climate Change. Glob. Environ. Chang. 2008, 18, 442–457. [Google Scholar] [CrossRef]
- Melvin, A.M.; Larsen, P.; Boehlert, B.; Neumann, J.E.; Chinowsky, P.; Espinet, X.; Martinich, J.; Baumann, M.S.; Rennels, L.; Bothner, A.; et al. Climate Change Damages to Alaska Public Infrastructure and the Economics of Proactive Adaptation. Proc. Natl. Acad. Sci. USA 2017, 114, E122–E131. [Google Scholar] [CrossRef] [Green Version]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost Is Warming at a Global Scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Zhang, T.; Lu, Y.; Han, F.; Zhou, Y.; Hu, D. Engineering Risk Analysis in Cold Regions: State of the Art and Perspectives. Cold Reg. Sci. Technol. 2020, 171, 102963. [Google Scholar] [CrossRef]
- Rasigraf, O.; Wagner, D. Landslides: An Emerging Model for Ecosystem and Soil Chronosequence Research. Earth-Sci. Rev. 2022, 231, 104064. [Google Scholar] [CrossRef]
- Patton, A.I.; Rathburn, S.L.; Capps, D.M. Landslide Response to Climate Change in Permafrost Regions. Geomorphology 2019, 340, 116–128. [Google Scholar] [CrossRef]
- Blais-Stevens, A.; Kremer, M.; Bonnaventure, P.P.; Smith, S.L.; Lipovsky, P.; Lewkowicz, A.G. Active layer detachment slides and retrogressive thaw slumps susceptibility mapping for current and future permafrost distribution, yukon alaska highway corridor. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 1, pp. 449–453. ISBN 978-3-319-09299-7. [Google Scholar]
- Niu, F.; Luo, J.; Lin, Z.; Fang, J.; Liu, M. Thaw-Induced Slope Failures and Stability Analyses in Permafrost Regions of the Qinghai-Tibet Plateau, China. Landslides 2016, 13, 55–65. [Google Scholar] [CrossRef]
- Osterkamp, T.E.; Jorgenson, M.T.; Schuur, E.A.G.; Shur, Y.L.; Kanevskiy, M.Z.; Vogel, J.G.; Tumskoy, V.E. Physical and Ecological Changes Associated with Warming Permafrost and Thermokarst in Interior Alaska: Physical and Ecological Changes Associated with Thermokarst. Permafr. Periglac. Process. 2009, 20, 235–256. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Way, R.G. Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Zhong, S. Trends in Arctic Seasonal and Extreme Precipitation in Recent Decades. Theor. Appl. Climatol. 2021, 145, 1541–1559. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in Temperature and Precipitation Extremes in the CMIP5 Ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- McCrystall, M.R.; Stroeve, J.; Serreze, M.; Forbes, B.C.; Screen, J.A. New Climate Models Reveal Faster and Larger Increases in Arctic Precipitation than Previously Projected. Nat. Commun. 2021, 12, 6765. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Hill, K.; Sousanes, P.J. WC_G ARCN RAWS Corrected Data. Available online: https://irma.nps.gov/DataStore/Reference/Profile/2279038 (accessed on 16 August 2022).
- Hill, K.; Sousanes, P.J. WC_G CAKN RAWS Corrected Data. Available online: https://irma.nps.gov/DataStore/Reference/Profile/2279039 (accessed on 16 August 2022).
- Western Regional Climate Center. RAWS USA Climate Archive. Available online: https://wrcc.dri.edu/wraws/akF.html (accessed on 16 August 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Bromwich, D.H.; Wilson, A.B.; Justino, F.; Wang, S.-H. Climate Extremes across the North American Arctic in Modern Reanalyses. J. Clim. 2021, 34, 2385–2410. [Google Scholar] [CrossRef]
- White, J.H.R.; Walsh, J.E.; Thoman, R.L. Using Bayesian Statistics to Detect Trends in Alaskan Precipitation. Int. J. Climatol. 2021, 41, 2045–2059. [Google Scholar] [CrossRef]
- Bachand, C.L.; Walsh, J.E. Extreme Precipitation Events in Alaska: Historical Trends and Projected Changes. Atmosphere 2022, 13, 388. [Google Scholar] [CrossRef]
- Räisänen, J. Effect of Atmospheric Circulation on Surface Air Temperature Trends in Years 1979–2018. Clim. Dyn. 2021, 56, 2303–2320. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef] [Green Version]
- Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; et al. The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. J. Clim. 2011, 24, 3484–3519. [Google Scholar] [CrossRef]
- Walsh, J.E.; Bhatt, U.S.; Littell, J.S.; Leonawicz, M.; Lindgren, M.; Kurkowski, T.A.; Bieniek, P.A.; Thoman, R.; Gray, S.; Rupp, T.S. Downscaling of Climate Model Output for Alaskan Stakeholders. Environ. Model. Softw. 2018, 110, 38–51. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A Scenario of Comparatively High Greenhouse Gas Emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The Representative Concentration Pathways: An Overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Wang, W.; Huang, X.-Y.; Duda, M. A Description of the Advanced Research WRF Version 3; UCAR/NCAR: Boulder, CO, USA, 2008; p. 1002. [Google Scholar]
- Bieniek, P.A.; Bhatt, U.S.; Walsh, J.E.; Rupp, T.S.; Zhang, J.; Krieger, J.R.; Lader, R. Dynamical Downscaling of ERA-Interim Temperature and Precipitation for Alaska. J. Appl. Meteorol. Climatol. 2016, 55, 635–654. [Google Scholar] [CrossRef]
- Brown, D.; Brownrigg, R.; Haley, M.; Huang, W. NCAR Command Language (NCL) (Version 6.4.0); UCAR/NCAR: Boulder, CO, USA, 2012. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Proc. K. Ned. Akad. Van Wet. 1950, 53A, 386–392. [Google Scholar]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Statist. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Chung, J.-W.; Rogers, J.D. Influence of Assumed Groundwater Depth on Mapping Liquefaction Potential. Environ. Eng. Geosci. 2013, 19, 377–389. [Google Scholar] [CrossRef]
- Forcellini, D. The Role of the Water Level in the Assessment of Seismic Vulnerability for the 23 November 1980 Irpinia–Basilicata Earthquake. Geosciences 2020, 10, 229. [Google Scholar] [CrossRef]
- Morgan, C.P.; Stolt, M.H. A comparison of several approaches to monitor water-table fluctuations. Soil Sci. Soc. Am. J. 2004, 68, 562–566. [Google Scholar] [CrossRef]
MAAT | JJA PCPT | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Station | Code | Type | Lat (° N) | Lon (° W) | Elev (m) | BOR | N | (°C) | Trend (°C dec−1) | N | (cm) | Trend (cm dec−1) |
Gates of the Arctic (GAAR) | ||||||||||||
Bettles Airport | PABT | GHCN | 66.9 | 151.5 | 196 | 1952 | 68 | −5.1 | 0.4 | 67 | 15.4 | 0.6 |
Chimney Lake | CHMA | ARCN | 67.7 | 150.6 | 1152 | 2013 | 7 | −4.5 | 2.3 | 6 | 21.2 | 7.5 |
Killik Pass | KLIA | ARCN | 68.0 | 155.0 | 1327 | 2013 | 6 | −6.7 | 2.5 | 6 | 17.1 | 17.5 |
Norutak Lake | NRUA | FIRE | 66.8 | 154.3 | 74 | 1999 | 5 | −5.3 | 6.4 | 14 | 17.9 | −0.8 |
Pamichtuk Lake | PAMA | ARCN | 67.8 | 152.2 | 1004 | 2013 | 6 | −4.2 | 0.6 | 7 | 13.9 | −6.1 |
Ram Creek | RAMA | ARCN | 67.6 | 154.3 | 1253 | 2015 | 5 | −5.0 | 0.9 | 4 | 12.1 | −7.1 |
Denali (DENA) | ||||||||||||
Eielson VC | EVCA | CAKN | 63.4 | 150.3 | 1113 | 2006 | 14 | −1.1 | 2.8 | 13 | 46.0 | −0.3 |
McKinley Park | DNPA | GHCN | 63.7 | 149.0 | 631 | 1923 | 73 | −2.4 | 0.2 | 76 | 20.4 | 0.7 |
Stampede | SMPA | CAKN | 63.7 | 150.3 | 549 | 2004 | 16 | −3.6 | 1.7 | 14 | 21.5 | 5.3 |
Toklat | TKLA | CAKN | 63.5 | 150.0 | 890 | 2006 | 14 | −2.4 | 2.8 | 14 | 30.1 | 16.1 |
Wigand | WIGA | CAKN | 63.8 | 150.1 | 543 | 2014 | 6 | −1.1 | 1.2 | 6 | 25.4 | −2.2 |
Wonder Lake | WONA | FIRE | 63.5 | 150.9 | 659 | 2004 | 11 | −2.8 | 2.6 | 14 | 28.8 | 15.6 |
Wrangell-St. Elias (WRST) | ||||||||||||
Chicken Creek | CREA | CAKN | 62.1 | 141.8 | 1597 | 2005 | 15 | −3.3 | 2.1 | 14 | 25.2 | −7.4 |
Chitutu | CTUA | CAKN | 61.3 | 142.6 | 1385 | 2005 | 15 | −2.1 | 1.7 | 13 | 14.8 | 8.8 |
Gates Glacier | GGLA | CAKN | 61.6 | 143.0 | 1237 | 2006 | 14 | −1.5 | 2.6 | 11 | 30.9 | 2.2 |
May Creek | MCKA | FIRE | 61.3 | 142.7 | 491 | 1998 | 12 | −1.1 | 2.6 | 16 | 14.4 | 0.4 |
Tana Knob | TANA | CAKN | 60.9 | 142.9 | 1140 | 2008 | 5 | −1.7 | 2.5 | 6 | 8.5 | −4.4 |
Tebay | TEBA | CAKN | 61.2 | 144.3 | 573 | 2006 | 13 | −1.4 | 2.9 | 13 | 14.9 | −0.5 |
MAAT (1981–2020) | JJA PCPT (1981–2020) | |||||||
---|---|---|---|---|---|---|---|---|
National Park | ERA5 Mean (°C) | ERA5 Trend (°C dec−1) | CCSM Bias (°C) | GFDL Bias (°C) | ERA5 Mean (cm) | ERA5 Trend (cm dec−1) | CCSM Bias (cm) | GFDL Bias (cm) |
Gates of the Arctic (GAAR) | ||||||||
Park average | −9.2 | 0.6 | 0.9 | 1.4 | 29.4 | −0.5 | −0.9 | 5.7 |
Road corridor | −6.1 | 0.6 | 0.4 | 2.2 | 27.9 | −2.2 | 5.3 | 12.9 |
Denali (DENA) | ||||||||
Park average | −3.8 | 0.5 | −0.5 | −0.5 | 39.7 | 0.5 | 5.6 | 10.5 |
Road corridor | −4.9 | 0.5 | 0.2 | 0.0 | 37.3 | 1.0 | −6.4 | 2.0 |
Wrangell-St. Elias (WRST) | ||||||||
Park average | −5.1 | 0.3 | −0.3 | −0.3 | 35.9 | 1.4 | 5.7 | 8.9 |
Road corridor | −3.0 | 0.4 | −0.2 | 0.8 | 35.3 | 1.1 | 14.6 | 3.1 |
MAAT | JJA PCPT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
National Park | Period | Min | Q1 | Med | Q3 | Max | Min | Q1 | Med | Q3 | Max |
Gates of the Arctic (GAAR) | |||||||||||
ERA5-PA | 1981–2020 | −11.4 | −10.2 | −9.2 | −8.3 | −6.8 | 19.5 | 26.4 | 29.2 | 31.5 | 45.0 |
ERA5-RC | 1981–2020 | −8.3 | −7.0 | −6.1 | −5.2 | −3.6 | 15.2 | 22.5 | 26.8 | 31.5 | 49.9 |
CCSM-PA | 2021–2060 | −8.8 | −8.2 | −7.3 | −6.8 | −3.7 | 17.9 | 27.7 | 31.3 | 36.1 | 48.2 |
CCSM-RC | 2021–2060 | −6.0 | −4.8 | −4.0 | −3.3 | −0.4 | 11.0 | 23.3 | 28.0 | 33.9 | 51.2 |
GFDL-PA | 2021–2060 | −9.5 | −6.5 | −5.9 | −4.6 | −4.1 | 25.2 | 36.1 | 38.5 | 42.1 | 53.8 |
GFDL-RC | 2021–2060 | −6.3 | −3.4 | −2.7 | −1.5 | −1.0 | 20.3 | 30.6 | 36.8 | 44.8 | 55.7 |
CCSM-PA | 2061–2100 | −6.3 | −4.8 | −3.8 | −3.1 | −1.8 | 21.7 | 26.8 | 35.0 | 39.5 | 51.9 |
CCSM-RC | 2061–2100 | −3.0 | −1.4 | −0.4 | 0.4 | 1.5 | 13.9 | 22.5 | 33.0 | 40.6 | 63.4 |
GFDL-PA | 2061–2100 | −3.6 | −2.5 | −2.0 | −1.2 | −0.1 | 34.3 | 39.7 | 44.4 | 50.5 | 79.5 |
GFDL-RC | 2061–2100 | −0.5 | 0.5 | 1.1 | 1.8 | 2.9 | 26.5 | 35.4 | 42.0 | 50.3 | 66.4 |
Denali (DENA) | |||||||||||
ERA5-PA | 1981–2020 | −5.9 | −4.7 | −3.9 | −2.8 | −1.1 | 21.9 | 34.1 | 38.8 | 43.6 | 54.6 |
ERA5-RC | 1981–2020 | −7.1 | −5.6 | −4.9 | −3.9 | −2.3 | 23.9 | 33.7 | 36.2 | 40.2 | 50.0 |
CCSM-PA | 2021–2060 | −4.0 | −2.9 | −2.2 | −1.6 | 0.7 | 25.8 | 40.0 | 44.0 | 49.3 | 64.3 |
CCSM-RC | 2021–2060 | −5.2 | −4.1 | −3.4 | −2.8 | −0.4 | 29.1 | 37.8 | 40.1 | 46.5 | 61.1 |
GFDL-PA | 2021–2060 | −4.0 | −1.7 | −0.5 | 0.5 | 1.6 | 40.7 | 47.6 | 51.9 | 55.3 | 64.5 |
GFDL-RC | 2021–2060 | −5.3 | −2.7 | −1.7 | −0.5 | 0.4 | 40.1 | 45.2 | 48.7 | 55.4 | 67.0 |
CCSM-PA | 2061–2100 | −1.6 | 0.2 | 1.2 | 2.2 | 3.8 | 34.9 | 42.5 | 45.1 | 50.4 | 62.7 |
CCSM-RC | 2061–2100 | −3.0 | −0.9 | −0.2 | 0.8 | 2.7 | 33.2 | 40.1 | 46.0 | 49.6 | 71.8 |
GFDL-PA | 2061–2100 | 1.4 | 2.2 | 2.9 | 3.4 | 5.2 | 46.1 | 54.3 | 58.5 | 62.5 | 69.1 |
GFDL-RC | 2061–2100 | 0.1 | 1.0 | 1.7 | 2.2 | 4.0 | 54.6 | 58.1 | 61.1 | 64.6 | 73.9 |
Wrangell-St. Elias (WRST) | |||||||||||
ERA5-PA | 1981–2020 | −6.8 | −5.8 | −5.0 | −4.7 | −2.9 | 23.6 | 30.8 | 36.4 | 40.3 | 62.2 |
ERA5-RC | 1981–2020 | −5.0 | −3.7 | −3.0 | −2.4 | −0.4 | 20.4 | 29.7 | 36.1 | 39.0 | 61.0 |
CCSM-PA | 2021–2060 | −4.6 | −4.0 | −3.4 | −3.3 | −1.7 | 23.8 | 33.2 | 38.9 | 43.9 | 67.2 |
CCSM-RC | 2021–2060 | −2.7 | −1.9 | −1.3 | −0.9 | 0.9 | 27.3 | 33.3 | 38.9 | 46.4 | 62.1 |
GFDL-PA | 2021–2060 | −5.6 | −3.6 | −2.2 | −1.8 | −0.4 | 23.3 | 39.7 | 44.6 | 48.1 | 61.0 |
GFDL-RC | 2021–2060 | −3.6 | −1.4 | 0.0 | 0.6 | 2.3 | 18.7 | 37.5 | 43.6 | 49.7 | 59.4 |
CCSM-PA | 2061–2100 | −2.7 | −1.4 | −0.7 | −0.3 | 0.9 | 26.9 | 32.8 | 40.0 | 49.9 | 65.1 |
CCSM-RC | 2061–2100 | −0.9 | 0.8 | 1.6 | 2.1 | 3.5 | 17.2 | 25.6 | 37.5 | 45.3 | 64.6 |
GFDL-PA | 2061–2100 | −1.1 | 0.1 | 0.8 | 1.1 | 2.1 | 44.7 | 49.7 | 55.9 | 60.8 | 85.9 |
GFDL-RC | 2061–2100 | 1.0 | 2.3 | 3.2 | 3.6 | 4.7 | 35.8 | 41.0 | 51.0 | 56.4 | 80.5 |
2021–2060 | 2061–2100 | |||||
---|---|---|---|---|---|---|
National Park | Low | Medium | High | Low | Medium | High |
Gates of the Arctic (GAAR) | ||||||
CCSM | MAAT | JJA PCPT | JJA PCPT | MAAT | ||
GFDL | MAAT | JJA PCPT | MAAT, JJA PCPT | |||
Denali (DENA) | ||||||
CCSM | MAAT | JJA PCPT | JJA PCPT | MAAT | ||
GFDL | MAAT | JJA PCPT | MAAT, JJA PCPT | |||
Wrangell-St. Elias (WRST) | ||||||
CCSM | MAAT, JJA PCPT | JJA PCPT | MAAT | |||
GFDL | JJA PCPT | MAAT | JJA PCPT | MAAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lader, R.; Sousanes, P.; Bhatt, U.S.; Walsh, J.E.; Bieniek, P.A. Climate Indicators of Landslide Risks on Alaska National Park Road Corridors. Atmosphere 2023, 14, 34. https://doi.org/10.3390/atmos14010034
Lader R, Sousanes P, Bhatt US, Walsh JE, Bieniek PA. Climate Indicators of Landslide Risks on Alaska National Park Road Corridors. Atmosphere. 2023; 14(1):34. https://doi.org/10.3390/atmos14010034
Chicago/Turabian StyleLader, Rick, Pamela Sousanes, Uma S. Bhatt, John E. Walsh, and Peter A. Bieniek. 2023. "Climate Indicators of Landslide Risks on Alaska National Park Road Corridors" Atmosphere 14, no. 1: 34. https://doi.org/10.3390/atmos14010034
APA StyleLader, R., Sousanes, P., Bhatt, U. S., Walsh, J. E., & Bieniek, P. A. (2023). Climate Indicators of Landslide Risks on Alaska National Park Road Corridors. Atmosphere, 14(1), 34. https://doi.org/10.3390/atmos14010034