Heavy Metal Content in the Soil along the Road No. 7 near Chyżne
Abstract
:1. Introduction
- products of imperfect and incomplete combustion: hydrocarbons, carbon mon-oxide, aldehydes;
- nitrogen products from oxidation of the air—NOx;
- products of combusting admixtures and pollutants and other compounds (dust and heavy metals: Cd, Cr, Cu, Pb, Ni, and Zn).
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Material
2.4. Methods
2.4.1. Chemical Analysis
- Manually cleaning the collected samples by removing foreign material (dry leaves, twigs, grass, etc.);
- Drying the samples at 70 °C;
- Grinding soil samples in a ceramic mortar and sieving through a sieve with a mesh diameter of 2 mm;
- Mineralization, which is performed to completely break down soil samples into simple, solid compounds—1 g of the dried sample material was digested with a modified Aqua Regia solution of equal parts concentrated HCl, HNO3, and DIH2O for one hour in a heating block or hot water bath. The resulting solution was filtered and stored in sealed polyethylene containers until sent for spectrometric analysis;
- The determination of the total content of heavy metals using the inductively coupled plasma mass spectrometry (ICP-MS) method in the Bureau Veritas laboratory. The use of the Bureau Veritas methodology made it possible to accurately determine the metal content in the soil material, with the following detection limits (mg kg−1) for Cd: 0.01, Cr: 0.5, Cu: 0.01, Ni: 0.1, Pb: 0.01 and Zn: 0.1. The STD DS11 and STD OREAS262 standards were used as reference materials.
2.4.2. Statistical Analysis of the Data
- |r| = 0—no correlation,
- 0 < |r| ≤ 0.3—very weak correlation,
- 0.3 < |r| ≤ 0.5—weak correlation,
- 0.5 < |r| ≤ 0.7—moderate correlation,
- 0.7 < |r| ≤ 0.9—high correlation,
- 0.9 < |r| < 1.0—very high correlation,
- |r| = 1—full correlation.
3. Results
3.1. Relationship with Land Cover
3.2. Relationship with Wind Direction
3.3. Relationship with Distance
3.4. Relationship with Distance—Land Cover (Open Area) Only for Chemical Elements from the Open Area
3.5. Relationshipdistance—Wind Direction (Upwind)
3.6. Relationship Distance—Wind Direction (Downwind)
3.7. Spearman’s Correlation Coefficients
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zechmeister, H.; Hohenwallner, D.; Riss, A.; Hanus-Illnar, A. Estimation of element deposition derived from road traffic sources by using mosses. Environ. Pollut. 2005, 138, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Zechmeister, H.; Hagendorfer, H.; Hohenwallner, D.; Hanus-Illnar, A.; Riss, A. Analyses of platinum group elements in mosses as indicators of road traffic emissions in Austria. Atmos. Environ. 2006, 40, 7720–7732. [Google Scholar] [CrossRef]
- Wessolek, G.; Kluge, B.; Toland, A.; Nehls, T.; Klingelmann, E.; Rim, Y.N.; Mekiffer, B.; Trinks, S. Urban soils in the vadose zone. In Perspectives in Urban Ecology; Endlicher, W., Ed.; Springer: Berlin, Germany, 2011; pp. 89–133. [Google Scholar]
- Ely, J.; Neal, C.; Kulpa, C.; Schneegurt, M.; Seidler, J. Implications of platinum-group element accumulation along US roads from catalytic-converter attrition. Environ. Sci. Technol. 2001, 35, 3816–3822. [Google Scholar] [CrossRef] [PubMed]
- Laschober, C.H.; Limbeck, A.; Rendl, J.; Puxbaum, H. Particulate emissions from on-road vehicles in the Kaisermühlen-tunnel (Vienna, Austria). Atmos. Environ. 2004, 38, 2187–2195. [Google Scholar] [CrossRef]
- Hjortenkrans, D.; Bergbäck, B.; Häggerud, A. New metal emission patterns in road traffic environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Bakirdere, S.; Yaman, M. Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey. Environ. Monit. Assess. 2008, 136, 401–410. [Google Scholar] [CrossRef]
- Harrison, R.M.; Tilling, R.; Romero, M.; Harrad, S.; Jarvis, K. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos. Environ. 2003, 37, 2391–2402. [Google Scholar] [CrossRef]
- Monaci, F.; Moni, F.; Lanciotti, E.; Grechi, D.; Bargagli, R. Biomonitoring of airborne metals in urban environments: New tracers of vehicle emission, in place of lead. Environ. Pollut. 2000, 107, 321–327. [Google Scholar] [CrossRef]
- Djingova, R.; Kovacheva, P.; Wagner, G.; Markert, B. Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci. Total Environ. 2003, 308, 235–246. [Google Scholar] [CrossRef]
- Whiteley, J.; Murray, F. Autocatalyst-derived platinum, palladium and rhodium (PGE) in infiltration basin and wetland sediments receiving urban runoff. Sci. Total Environ. 2005, 317, 121–135. [Google Scholar] [CrossRef]
- DeMiguel, E.; Llamas, J.; Chacon, E.; Berg, T.; Larssen, S.; Royset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar]
- Lindgren, Ǻ. Asphalt wear and pollution transport. Sci. Total Approx. 1996, 189–190, 281–286. [Google Scholar] [CrossRef]
- Czarnowska, K.; Chlibiuk, M.; Kozanecka, T. Pierwiastki śladowe w glebach uprawnych przy drogach wokół Warszawy [Trace elements in arable soils at the roads around Warsaw]. Rocz. Glebozn. 2002, LIII, 67–74. [Google Scholar]
- Fakayode, S.; Olu-Owolabi, B. Heavy metal contamination of roadside top soil in Osogbo, Nigeria; Its relationship to traffic density and proximity to highways. J. Environ. Geol. 2003, 44, 150–157. [Google Scholar] [CrossRef]
- Schröder, W.; Pesch, R.; Englert, C.; Harmens, H.; Suchara, I.; Zechmeister, H.; Thöni, L.; Maňkovská, B.; Jeran, Z.; Grodzinska, K.; et al. Metal accumulation in mosses across national boundaries: Uncovering and ranking causes of spatial variation. Environ. Pollut. 2008, 151, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Viard, B.; Pihan, F.; Promeyrat, S.; Pihan, J.-C. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: Bioaccumulation in soil, Graminaceae and land snails. Chemosphere 2004, 55, 1349–1359. [Google Scholar] [CrossRef]
- Turer, D. Effect of non-vehicular sources on heavy metal concentrations of roadside soils. Water Air Soil Pollut. 2005, 166, 251–264. [Google Scholar] [CrossRef]
- Saeedi, M.; Hosseinzadeh, M.; Jamshidi, A.; Pajooheshfar, S.P. Assessment of heavy metal concentration and leaching characteristics in highway side soils, Iran. Envion. Prompt. Assess. 2009, 151, 231–241. [Google Scholar]
- Zehetner, F.; Rosenfellner, U.; Mentler, A.; Gerzabek, M.H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons accross a highway-forest interface. Water Air Soil Pollut. 2009, 198, 125–132. [Google Scholar] [CrossRef]
- Masoudi, S.N.; Ghajar Sepanlou, M.; Bahmanyar, M.A. Distribution of lead, cadmium, copper and zinc in roadside soil of Sari-Ghaemshahr road, Iran. Afr. J. Agric. Res. 2002, 7, 198–204. [Google Scholar]
- Klimowicz, Z.; Melke, J. Zawartość Metali Ciężkich w Glebach w Sąsiedztwie Szlaków Komunikacyjnych na Przykładzie Wybranych Tras [The Content of Heavy Metals in Soils in the Vicinity of Communication Routes on the Example of Selected Routes]. Rocz. Glebozn. 2000, LI, 37–46. [Google Scholar]
- Kaniuczak, J.; Trąba, C.; Godzisz, J. Zawartość ołowiu i kadmu w glebach i roślinach przy wybranych szlakach komunikacyjnych regionu Zamojskiego [Lead and cadmium content in the soils and plants along selected communication routes of the Zamość region]. Zesz. Prob. PNR 2003, 493, 133–138. [Google Scholar]
- Korzeniowska, J.; Panek, E. Trace metal concentrations in Pleurozium schreberi and Taraxacum officinale along the road no. 7. Ecol. Chem. Eng. S 2019, 26, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Ćwiąkała, M.; Korzeniowska, J.; Kraszewski, C.; Rafalski, L. Testing the concentration of trace metals in soils near roads with varied traffic intensity. Roads and Bridges. Drog. Mosty 2019, 18, 127–134. [Google Scholar]
- Watson, J.; Chow, J.; Pace, T. Fugitive dust emissions. In Air Pollution Engineering Manual; Wiley: New York, NY, USA, 2000; pp. 117–135. [Google Scholar]
- Piron-Frenet, M.; Bureau, F.; Pineau, A. Lead accumulation in surface roadside soil. Its relationship to traffic density and meteorological parameters. Sci. Total Environ. 1994, 144, 297–304. [Google Scholar] [CrossRef]
- Lorenc, H. Atlas klimatu Polski [The Climate Atlas of Poland]; Institute of Meteorology and Water Management: Warsaw, Poland, 2005. [Google Scholar]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundzewicz, Z.; Jania, J. Extreme Meteorological and Hydrological Events in Poland. Geogr. Pol. 2007, 80, 1–196. Available online: http://rcin.org.pl/igipz/Content/107/GP_80_2_cala.pdf (accessed on 1 February 2022).
- Weather. Available online: https://www.meteoblue.com/pl. (accessed on 8 October 2021).
- Dijkstra, L.; Poelman, H.; Ackermans, L. Road Transport Performance in Europe; European Commission: Luxembourg, 2019; ISBN 9789276098072. [Google Scholar] [CrossRef]
- GPR. Available online: http://www.gddkia.gov.pl/pl/2551/GPR-2015. (accessed on 14 September 2020).
- Gajec, M.; King, A.; Kukulska-Zająac, E.; Mostowska-Stąsiek, J. Pobieranie próbek gleby w kontekście prowadzenia oceny zanieczyszczenia powierzchni ziemi [Soil sampling in the context of soil pollution assessment]. Nafta-Gas 2018, 3, 215–225. [Google Scholar] [CrossRef]
- Namieśnik, J.; Łukasiak, J.; Jamrógiewicz, Z. Pobieranie Próbek Środowiskowych do Analizy [Collecting Environmental Samples for Analysis]; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1995; pp. 67–96. [Google Scholar]
- Viskari, E.; Rekilä, R.; Roy, S.; Lehto, O.; Ruuskanen, J.; Kärenlampi, L. Airborne pollutants along a roadside: Assessment using snow analyses and moss bags. Environ. Pollut. 1997, 97, 153–160. [Google Scholar] [CrossRef]
- Kováčik, J.; Dudáš, M.; Hedbavny, J.; Mártonfi, P. Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities. Environ. Pollut. 2016, 218, 160–167. [Google Scholar] [CrossRef]
- Giacomino, A.; Malandrino, M.; Colombo, M.L.; Miaglia, S.; Maimone, P.; Blancato, S.; Conca, E.; Abollino, O. Metal content in dandelion (Taraxacum officinale) leaves: Influence of vehicular traffic and safety upon consumption as food. J. Chem. 2016, 2016, 9842987. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Dudka, S. Trace metal contents of Taraxacum officinale (dandelion) as a convenient environmental indicator. Environ. Geochem. Health 1991, 13, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Marr, K.; Fyles, H.; Hendershot, W. Trace metals in Montreal urban soils and the leaves of Taraxacum officinale. Can. J. Soil Sci. 1999, 79, 385–387. [Google Scholar] [CrossRef] [Green Version]
- Diatta, J.B.; Grzebisz, W.; Apolinarska, K. A study of soil pollution by heavy metals in the city of Poznań (Poland) using dandelion (Taraxacum officinale WEB.) as a bioindicator. Electron. J. Pol. Agric. Univ. Environ. Dev. 2003, 6. Available online: http://www.ejpau.media.pl/volume6/issue2/environment/art-01.html (accessed on 1 January 2022).
- Czarnowska, K.; Milewska, A. The content of heavy metals in an indicator plant (Taraxacum officinale) in Warsaw. Pol. J. Environ. Stud. 2000, 9, 125–128. [Google Scholar]
- Ligocki, M.; Tarasewicz, Z.; Zygmunt, A.; Aniśko, M. The common dandelion (Taraxacum officinale) as an indicator of anthropogenic toxic metal pollution of environment. Acta Sci. Pol. Zootech. 2011, 10, 73–82. [Google Scholar]
- Roorda-Knape, M.C.; Janssen, N.A.; De Hartog, J.J.; Van Vliet, P.H.; Harssema, H.; Brunekreef, B. Air pollution from traffic in city districts near major motorway. Atmos. Environ. 1998, 32, 1921–1930. [Google Scholar] [CrossRef]
- Garcia, R.; Hart, J.E.; Davis, M.E.; Reaser, P.; Natkin, J.; Laden, F.; Garshick, E.; Smith, T.J. Effects of Wind on Background Particle Concentrations at Truck Freight Terminals. J. Occup. Environ. Hyg. 2007, 4, 36–48. [Google Scholar] [CrossRef]
- Hagler, G.S.; Baldauf, R.W.; Thoma, E.D.; Long, T.R. Ultrafine particles near a major roadway in Raleigh, North Carolina: Downwind attenuation and correlation with traffic-related pollutants. Atmos. Environ. 2009, 43, 1229–1234. [Google Scholar] [CrossRef]
- McGee, M.A.; Kamal, A.S.; McGee, J.K.; Wood, C.E.; Dye, J.A.; Krantz, Q.T.; Landis, M.S.; Gilmour, M.I.; Gavett, S.H. Differential effects of particulate matter upwind and downwind of an urban freeway in an allergic mouse model. Environ. Sci. Technol. 2015, 49, 3930–3939. [Google Scholar] [CrossRef]
- Sucharová, J.; Suchara, I. Bio-monitoring the atmospheric deposition of elements and their compounds using moss analysis in the Czech Republic. Results of the international bio-monitoring programme UNECE ICP-Vegetation 2000. Part I Elements required for the bio-monitoring programme. Acta Pruhonicina 2004, 77, 1–135. [Google Scholar]
Variable | Parameter | Total (N = 72) |
---|---|---|
Transect | 12 (6 in the forest and in the open area, and 6 on the upwind and downwind sides) | N = 6 for each transect |
Land cover | Forest | 50% (N = 36) |
Open area | 50% (N = 36) | |
Wind direction | Upwind | 50% (N = 36) |
Downwind | 50% (N = 36) | |
Distance (m) | 5 | 16.7% (N = 12) |
50 | 16.7% (N = 12) | |
100 | 16.7% (N = 12) | |
300 | 16.7% (N = 12) | |
500 | 16.7% (N = 12) | |
600 | 16.7% (N = 12) | |
Distance (m) divided | Equal or smaller than 100 | 50% (N = 36) |
More than 100 | 50% (N = 36) |
Metal | Parameters | Concentration (mg kg−1) |
---|---|---|
Cr | Mean (SD) | 47.4 (13.5) |
Median (Q1–Q3) | 43.7 (35.5–59.8) | |
Min-Max | 28.0–72.1 | |
Cu | Mean (SD) | 19.5 (6.4) |
Median (Q1–Q3) | 18.6 (14.1–27.0) | |
Min-Max | 9.6–28.9 | |
Ni | Mean (SD) | 27.4 (8.7) |
Median (Q1–Q3) | 25.8 (19.8–37.5) | |
Min-Max | 14.0–40.8 | |
Pb | Mean (SD) | 34.9 (13.1) |
Median (Q1–Q3) | 30.6 (23.7–49.7) | |
Min-Max | 18.4–56.1 | |
Zn | Mean (SD) | 62.4 (20.5) |
Median (Q1–Q3) | 60.6 (43.2–83.5) | |
Min-Max | 30.0–90.2 |
Metal | Parameter | Concentration (mg kg−1) | p-Value | |
---|---|---|---|---|
Equal or Smaller than 100 m (N = 18) | More than 100 m (N = 18) | |||
Cr | Mean (SD) | 57.2 (8.7) | 33.4 (3.8) | <0.001 |
Cu | Mean (SD) | 24.2 (4.4) | 12.1 (2.3) | <0.001 |
Ni | Mean (SD) | 33.1 (6.5) | 17.7 (2.9) | <0.001 |
Pb | Mean (SD) | 44.4 (9.9) | 21.8 (3.0) | <0.001 |
Zn | Mean (SD) | 78.4 (9.6) | 39.0 (7.8) | <0.001 |
Metal | Parameter | Concentration [mg kg−1] | p-Value | |
---|---|---|---|---|
Equal or Smaller than 100 m (N = 18) | More than 100 m (N = 18) | |||
Cr | Mean (SD) | 61.1 (6.3) | 37.9 (5.7) | <0.001 |
Cu | Mean (SD) | 25.5 (3.4) | 16.4 (2.2) | <0.001 |
Ni | Mean (SD) | 36.2 (3.8) | 22.6 (3.3) | <0.001 |
Pb | Mean (SD) | 47.7 (7.1) | 25.9 (4.6) | <0.001 |
Zn | Mean (SD) | 83.1 (5.1) | 48.9 (8.8) | <0.001 |
Metal (mg kg−1) | Distance (m) | ||||
---|---|---|---|---|---|
Overall | Forest | Open Area | Upwind | Downwind | |
Cr | −0.891 (<0.001) | −0.898 (<0.001) | −0.913 (<0.001) | −0.930 (<0.001) | −0.908 (<0.001) |
Cu | −0.861 (<0.001) | −0.905 (<0.001) | −0.882 (<0.001) | −0.903 (<0.001) | −0.888 (<0.001) |
Ni | −0.858 (<0.001) | −0.892 (<0.001) | −0.913 (<0.001) | −0.901 (<0.001) | −0.879 (<0.001) |
Pb | −0.879 (<0.001) | −0.891 (<0.001) | −0.911 (<0.001) | −0.910 (<0.001) | −0.911 (<0.001) |
Zn | −0.895 (<0.001) | −0.918 (<0.001) | −0.912 (<0.001) | −0.915 (<0.001) | −0.919 (<0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzeniowska, J. Heavy Metal Content in the Soil along the Road No. 7 near Chyżne. Atmosphere 2023, 14, 2. https://doi.org/10.3390/atmos14010002
Korzeniowska J. Heavy Metal Content in the Soil along the Road No. 7 near Chyżne. Atmosphere. 2023; 14(1):2. https://doi.org/10.3390/atmos14010002
Chicago/Turabian StyleKorzeniowska, Joanna. 2023. "Heavy Metal Content in the Soil along the Road No. 7 near Chyżne" Atmosphere 14, no. 1: 2. https://doi.org/10.3390/atmos14010002