Ultra-Fine Particle Emissions Characterization and Reduction Technologies in a NG Heavy Duty Engine
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Tests Campaign—Oil Characterization
3.2. Experimental Tests Campaign—CPF Steady State
3.3. Experimental Tests Campaign—CPF WHTC Tests
3.4. Experimental Tests Campaign—CPF Step Loads
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, J.; Sun, X.; Jia, L.; Zhou, Y. Electric passenger vehicles sales and carbon dioxide emission reduction potential in China’s leading markets. J. Clean. Prod. 2020, 243, 118607. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Dewil, R.; Cattrysse, D. The electric vehicle routing problem and its variations: A literature review. Comput. Ind. Eng. 2021, 161, 107650. [Google Scholar] [CrossRef]
- Arora, S.; Abkenar, A.T.; Jayasinghe, S.G.; Tammi, K. Chapter 1—Heavy-duty Electric Vehicles and Society; Butterworth-Heinemann: Oxford, UK, 2021. [Google Scholar]
- Mogi, Y.; Oikawa, M.; Kichima, T.; Horiguchi, M.; Goma, K.; Takagi, Y.; Mihara, Y. Effect of high compression ratio on improving thermal efficiency and NOx formation in jet plume controlled direct-injection near-zero emission hydrogen engines. Int. J. Hydrogen Energy 2022, 47, 31459–31467. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, J.; Yun, H.; Zhang, H.; Xu, J. Diagnosis and control of abnormal combustion of hydrogen internal combustion engine based on the hydrogen injection parameters. Int. J. Hydrogen Energy 2022, 47, 15887–15895. [Google Scholar] [CrossRef]
- Bakar, R.A.; Kadirgama, K.; Ramasamy, D.; Yusaf, T.; Kamarulzaman, M.K.; Aslfattahi, N.; Samylingam, L.; Alwayzy, S.H. Experimental analysis on the performance, combustion/emission characteristics of a DI diesel engine using hydrogen in dual fuel mode. Int. J. Hydrogen Energy, 2022; in press. [Google Scholar] [CrossRef]
- Kumar, M.; Bhowmik, S.; Paul, A. Effect of pilot fuel injection pressure and injection timing on combustion, performance and emission of hydrogen-biodiesel dual fuel engine. Int. J. Hydrogen Energy 2022, 47, 29554–29567. [Google Scholar] [CrossRef]
- de las Nieves Camacho, M.; Jurburg, D.; Tanco, M. Hydrogen fuel cell heavy-duty trucks: Review of main research topics. Int. J. Hydrogen Energy 2022, 47, 29505–29525. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Xu, W.; Ma, Y.; Tan, D.; Peng, Q.; Tan, Y.; Chen, L. Soot formation mechanism of modern automobile engines and methods of reducing soot emissions: A review. Fuel Process. Technol. 2022, 235, 107373. [Google Scholar]
- Lee, C.F.; Pang, Y.; Wu, H.; Nithyanandan, K.; Liu, F. An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine. Appl. Energy 2020, 261, 114455. [Google Scholar] [CrossRef]
- Di Maio, D.; Beatrice, C.; Fraioli, V.; Napolitano, P.; Golini, S.; Rutigliano, F.G. Modeling of three-way catalyst dynamics for a compressed natural gas engine during lean–rich transitions. Appl. Sci. 2019, 9, 4610. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, D.; Beatrice, C.; Guido, C.; Fraioli, V.; Napolitano, P.; Kannepalli, S.; Golini, S.; Tsinoglou, D. Methane Conversion and Ammonia Formation Model over a Pd-Rh Three-Way Catalyst for CNG Heavy-Duty Engines; SAE Technical Paper; SAE: Warrendale, PA, USA, 2021. [Google Scholar]
- Grigoratos, T.; Fontaras, G.; Giechaskiel, B.; Zacharof, N. Real world emissions performance of heavy-duty Euro VI diesel vehicles. Atmos. Environ. 2019, 201, 348–359. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating particle number measurements from the tailpipe of light-duty vehicles: The next step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lähde, T.; Giechaskiel, B. Particle number emissions of gasoline, compressed natural gas (CNG) and liquefied petroleum gas (LPG) fueled vehicles at different ambient temperatures. Atmosphere 2021, 12, 893. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Ding, S.; Zhou, X.; Chen, R.; Zhang, X.; Yu, Z.; Wang, J. Mitigation effects of alternative aviation fuels on non-volatile particulate matter emissions from aircraft gas turbine engines: A review. Sci. Total Environ. 2022, 820, 153233. [Google Scholar] [CrossRef]
- Thiruvengadam, A.; Besch, M.C.; Yoon, S.; Collins, J.; Kappanna, H.; Carder, D.K.; Ayala, A.; Herner, J.; Gautam, M. Characterization of particulate matter emissions from a current technology natural gas engine. Environ. Sci. Technol. 2014, 48, 8235–8242. [Google Scholar] [CrossRef]
- Distaso, E.; Amirante, R.; Tamburrano, P.; Reitz, R.D. Steady-state characterization of particle number emissions from a heavy-duty Euro VI engine fueled with compressed natural gas. Energy Procedia 2018, 148, 671–678. [Google Scholar] [CrossRef]
- Fontaras, G.; Vouitsis, E.; Samaras, Z. Experimental Evaluation of the Fuel Consumption and Emissions Reduction Potential of Low Viscosity Lubricants; SAE Technical Paper; SAE: Warrendale, PA, USA, 2009. [Google Scholar]
- Lue, K.H. PN Emissions from Heavy Duty CNG Engine and CNG PEMS PN Issue; ACEA: Brussels, Belgium, 2018. [Google Scholar]
- Inoue, T.; Maeda, Y.; Takeda, M.; Nakada, M. Study of transient oil consumption of automotive engine. SAE Trans. 1989, 98, 1039–1045. [Google Scholar]
- Guido, C.; Napolitano, P.; Alfuso, S.; Corsetti, C.; Beatrice, C. How engine design improvement impacts on particle emissions from an HD SI natural gas engine. Energy 2021, 231, 120748. [Google Scholar] [CrossRef]
- Lähde, T.; Giechaskiel, B.; Martini, G.; Howard, K.; Jones, J.; Ubhi, S. Effect of lubricating oil characteristics on solid particle number and CO2 emissions of a Euro 6 light-duty compressed natural gas fuelled vehicle. Fuel 2022, 324, 124763. [Google Scholar] [CrossRef]
- Tan, P.; Li, Y.; Shen, H. Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles. J. Environ. Sci. 2017, 55, 354–362. [Google Scholar] [CrossRef]
- American Automobile Association. AAA Engine oil Research: AAA Proprietary Research into the Differences between Conventional and Synthetic Engine Oil; AAA: Heathrow, FL, USA, 2017. [Google Scholar]
- Liang, Z.; Chen, L.; Alam, M.S.; Rezaei, S.Z.; Stark, C.; Xu, H.; Harrison, R.M. Comprehensive chemical characterization of lubricating oils used in modern vehicular engines utilizing GC× GC-TOFMS. Fuel 2018, 220, 792–799. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, X.; Wang, Y.; Yu, H. Effects of viscosity index improver on morphology and graphitization degree of diesel particulate matter. Energy Procedia 2017, 105, 4236–4241. [Google Scholar] [CrossRef]
- Laurence, R.B.; Wong, V.W.; Brown, A.J. Effects of lubrication system parameters on diesel particulate emission characteristics. SAE Trans. 1996, 105, 157–164. [Google Scholar]
- Khan, M.I.; Yasmin, T.; Shakoor, A. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew. Sustain. Energy Rev. 2015, 51, 785–797. [Google Scholar] [CrossRef]
- Macian, V.; Tormos, B.; Ruiz, S.; Miro, G. Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribol. Int. 2016, 94, 240–248. [Google Scholar] [CrossRef]
- Premnath, V.; Khalek, I.; Morgan, P.; Michlberger, A.; Sutton, M.; Vincent, P. Effect of Lubricant Oil on Particle Emissions from a Gasoline Direct Injection Light-Duty Vehicle; SAE Technical Paper; SAE: Warrendale, PA, USA, 2018. [Google Scholar]
- Jung, H.; Kittelson, D.B.; Zachariah, M.R. The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation; SAE Technical Paper; SAE: Warrendale, PA, USA, 2003. [Google Scholar]
- Kajdas, C.; Majzner, M. Effectiveness of selected CHO compounds as antiwear additives to white mineral oils. Tribol. Trans. 2005, 48, 93–99. [Google Scholar] [CrossRef]
- Vipper, A.; Zadko, I.; Karaulov, A.; Ermolaev, M. Antifriction action of engine oil additives. Lubr. Sci. 2001, 14, 43–56. [Google Scholar] [CrossRef]
- Kang, Y. Role of selected dispersants in gasoline particulate emissions under lubricant formulations in the presence of commercial package and dispersant additives: Its effect on emissions, viscosity, and soot morphology. Fuel 2020, 281, 118444. [Google Scholar] [CrossRef]
- Stamatellou, A.M.; Stamatelos, A. Overview of Diesel particulate filter systems sizing approaches. Appl. Therm. Eng. 2017, 121, 537–546. [Google Scholar] [CrossRef]
- Ou, J.; Meng, Z.; Hu, Y.; Du, Y. Experimental investigation on the variation characteristics of soot layer thickness and pressure drop during DPF/CDPF active regeneration. Chem. Eng. Sci. 2021, 241, 116682. [Google Scholar] [CrossRef]
- Hansen, B.B.; Jensen, A.D.; Jensen, P.A. Performance of diesel particulate filter catalysts in the presence of biodiesel ash species. Fuel 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Mokhri, M.A.; Abdullah, N.R.; Abdullah, S.A.; Kasalong, S.; Mamat, R. Soot filtration recent simulation analysis in diesel particulate filter (DPF). Procedia Eng. 2012, 41, 1750–1755. [Google Scholar] [CrossRef] [Green Version]
- Toumasatos, Z.; Raptopoulos-Chatzistefanou, A.; Kolokotronis, D.; Pistikopoulos, P.; Samaras, Z.; Ntziachristos, L. The role of the driving dynamics beyond RDE limits and DPF regeneration events on pollutant emissions of a Euro 6d-temp passenger vehicle. J. Aerosol Sci. 2022, 161, 105947. [Google Scholar] [CrossRef]
- Meng, Z.; Zeng, B.; Tan, J.; Chen, Z.; Ou, J. Study of gas and particulate emission characteristics during the fast regeneration period of DPF. Fuel 2022, 317, 123353. [Google Scholar] [CrossRef]
- Beatrice, C.; Di Iorio, S.; Guido, C.; Napolitano, P. Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp. Therm. Fluid Sci. 2012, 39, 45–53. [Google Scholar] [CrossRef]
- Beatrice, C.; Costagliola, M.A.; Guido, C.; Napolitano, P.; Prati, M.V. How Much Regeneration Events Influence Particle Emissions of DPF-Equipped Vehicles? SAE Technical Paper; SAE: Warrendale, PA, USA, 2017. [Google Scholar]
- Gong, C.; Si, X.; Liu, F. Combustion and emissions behaviors of a stoichiometric GDI engine with simulated EGR (CO2) at low load and different spark timings. Fuel 2021, 295, 120614. [Google Scholar] [CrossRef]
- Raza, M.; Chen, L.; Leach, F.; Ding, S. A review of particulate number (PN) emissions from gasoline direct injection (GDI) engines and their control techniques. Energies 2018, 11, 1417. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J. Spatiotemporal flame propagations, combustion and solid particle emissions from lean and stoichiometric gasoline direct injection engine operation. Energy 2020, 210, 118652. [Google Scholar] [CrossRef]
- Chen, L.; Liang, Z.; Zhang, X.; Shuai, S. Characterizing particulate matter emissions from GDI and PFI vehicles under transient and cold start conditions. Fuel 2017, 189, 131–140. [Google Scholar] [CrossRef]
- Joshi, A.; Johnson, T.V. Gasoline particulate filters—A review. Emiss. Control Sci. Technol. 2018, 4, 219–239. [Google Scholar] [CrossRef]
- Chen, L.; Stone, R.; Richardson, D. Effect of the valve timing and the coolant temperature on particulate emissions from a gasoline direct-injection engine fuelled with gasoline and with a gasoline–ethanol blend. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 226, 1419–1430. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhu, X.; Zhang, J.; Zhang, B.; Tang, Y.; Xie, Y.; Zhang, X.; Zhu, G.; Wang, Z. Effects of exhaust parameters on temperature and pressure drop of the gasoline particulate filter in the regeneration equilibrium state. Fuel 2019, 257, 116019. [Google Scholar] [CrossRef]
- Lambert, C.; Chanko, T.; Dobson, D.; Liu, X.; Pakko, J. Gasoline particle filter development. Emiss. Control Sci. Technol. 2017, 3, 105–111. [Google Scholar] [CrossRef]
- Gong, J.; Stewart, M.L.; Zelenyuk, A.; Strzelec, A.; Viswanathan, S.; Rothamer, D.A.; Foster, D.E.; Rutland, C.J. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution. Chem. Eng. J. 2018, 338, 15–26. [Google Scholar] [CrossRef]
- McCaffery, C.; Zhu, H.; Li, C.; Durbin, T.D.; Johnson, K.C.; Jung, H.; Brezny, R.; Geller, M.; Karavalakis, G. On-road gaseous and particulate emissions from GDI vehicles with and without gasoline particulate filters (GPFs) using portable emissions measurement systems (PEMS). Sci. Total Environ. 2020, 710, 136366. [Google Scholar] [CrossRef]
- EU. Uniform provisions concerning the measures to be taken against the emission of gaseous and particulate pollutants from compression-ignition engines for use in vehicles, and the emission of gaseous pollutants from positive-ignition engines fuelled with natural gas or liquefied petroleum gas for use in vehicles. Off. J. Eur. Union 2011, 84, 3–19. [Google Scholar]
Carbon monoxide—CO [g/kWh] | 4.0 |
Non-methane hydrocarbons—NMHC [g/kWh] | 0.16 |
Methane—CH4 [g/kWh] | 0.5 |
Nitrogen oxides—NOx [g/kWh] | 0.46 |
Particulate matter—PM [g/kWh] | 0.01 |
Number of solid particles—PN [#/kWh] | 6.0 × 1011 |
Engine Type | Six Cylinders in Line |
---|---|
Emission homologation | Euro VI |
Displacement | 5883 cm3 |
Bore | 102 mm |
Stroke | 120 mm |
Valves per cylinder | 2 |
Rated power and torque | 150 kW @ 2700 rpm 750 Nm @ 1500 rpm |
Compression ratio | 10:1 |
Weight | 520 kg |
10 nm | 1.0 × 103 (dN/dlogDp/cc) |
30 nm | 4.0 × 102 |
100 nm | 1.7 × 102 |
300 nm | 8 × 101 |
Sensitivity to typical diesel accumulation mode (80 nm, σg = 1.8) | Number: ~170 N/cc Mass: ~0.5 µg/m3 Indicates typical level at which lognormal mode falls below the detection threshold |
Confirmed standards | UN/ECE-GRPE-PMP for sub-23 nm solid particle counting |
Measuring range | 0–30,000 p/cm3 (single count mode) Linear (R2 > 0.95) up to 50,000 p/cm3 |
Lower particle size limit | 10 nm (>50%)|15 nm (>90%) |
Mean instrument response time (t90) | 4.5 s |
Mean CPC sensor response time (t90) | 2.0 s |
CPC readability | 0.1 p/cm3 |
CPC data reporting frequency | 10 Hz |
Ambient temperature operation conditions | 5–25 °C |
Ambient relative humidity conditions | 0–90% non-condensing |
Tested Oils | Engine Condition | DAY 1 | DAY 2 | DAY 3 |
---|---|---|---|---|
Reference Oil | Cold, Hot | 6 | 6 | 6 |
Oil 1 | Cold, Hot | 6 | 4 | / |
Oil 2 | Cold, Hot | 6 | 4 | / |
Features | “Reference” Oil | Oil 1 | Oil 2 |
---|---|---|---|
SAE viscosity grade | 10W – 40W | 10W – 40W | 10W – 40W |
Viscosity [mm2/s] @ 100 °C | 13.49 | 13.8 | 13.53 |
Base oil | A | A | B |
Ash content | 1 | 0.5 | 1 |
Candidates | Engine Condition | PN Reduction [%] | Soot Reduction [%] |
---|---|---|---|
Oil 1 | Hot | 38 | 41 |
Cold | 27 | 19 | |
Oil 2 | Hot | 71 | 78 |
Cold | 70 | 84 |
Engine Speed (rpm) | Torque (Nm) | Load (%) | Efficiency (%) |
---|---|---|---|
1000 | 75 | 15 | 98.1 |
1000 | 150 | 30 | 98.0 |
1200 | 30 | 5 | 95.3 |
1200 | 90 | 15 | 98.8 |
1200 | 180 | 30 | 94.9 |
1200 | 240 | 40 | 97.6 |
ATS Config. | Engine Condition | DAY 1 | DAY 2 | DAY 3 |
---|---|---|---|---|
TWC | Cold, Hot | 4 | 4 | 4 |
TWC + CPF | Cold, Hot | 4 | 4 | 4 |
Magnitude | Phase 1 | Phase 2 |
---|---|---|
Load [%] | 25 | 50 |
Load step length [s] | 30 | 30 |
Tot. steps [#] | 8 | 8 |
Idle lengths [s] | 120; 240 | 120; 240 |
Tot. length [s] | 1800 | 1800 |
Test | Phase | PN Reduction—Idle [%] | PN Reduction—Load [%] |
---|---|---|---|
900 rpm | 1 | 98.4 | 96.6 |
2 | 99.1 | 95.2 | |
1400 rpm | 1 | 98.9 | 95.8 |
2 | 99.6 | 94.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, P.; Di Domenico, D.; Di Maio, D.; Guido, C.; Golini, S. Ultra-Fine Particle Emissions Characterization and Reduction Technologies in a NG Heavy Duty Engine. Atmosphere 2022, 13, 1919. https://doi.org/10.3390/atmos13111919
Napolitano P, Di Domenico D, Di Maio D, Guido C, Golini S. Ultra-Fine Particle Emissions Characterization and Reduction Technologies in a NG Heavy Duty Engine. Atmosphere. 2022; 13(11):1919. https://doi.org/10.3390/atmos13111919
Chicago/Turabian StyleNapolitano, Pierpaolo, Davide Di Domenico, Dario Di Maio, Chiara Guido, and Stefano Golini. 2022. "Ultra-Fine Particle Emissions Characterization and Reduction Technologies in a NG Heavy Duty Engine" Atmosphere 13, no. 11: 1919. https://doi.org/10.3390/atmos13111919
APA StyleNapolitano, P., Di Domenico, D., Di Maio, D., Guido, C., & Golini, S. (2022). Ultra-Fine Particle Emissions Characterization and Reduction Technologies in a NG Heavy Duty Engine. Atmosphere, 13(11), 1919. https://doi.org/10.3390/atmos13111919