Atmospheric Deposition of Lead and Cadmium in a Central European Country over the Last Three Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wet-Only Deposition
2.2. Dry Deposition
3. Results
3.1. Atmospheric Deposition of Lead
3.2. Atmospheric Deposition of Cadmium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkes, S.J. What Is a “Heavy Metal”? Chem. Educ. 1997, 74, 11. [Google Scholar] [CrossRef]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Hodson, M.E. Heavy metals-Geochemical bogey men? Environ. Pollut. 2004, 129, 341–343. [Google Scholar] [CrossRef]
- Rodríguez Martín, J.A.; de Arana, C.; Ramos-Miras, J.J.; Gil, C.; Boluda, R. Impact of 70 years urban growth associated with heavy metal pollution. Environ. Pollut. 2015, 196, 156–163. [Google Scholar] [CrossRef]
- Popoola, L.T.; Adebanjo, S.A.; Adeoye, B.K. Assessment of atmospheric particulate matter and heavy metals: A critical review. Int. J. Environ. Sci. Technol. 2018, 15, 935–948. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Zhou, B.; Huang, Y.; Lu, X.; Li, S.; Li, N. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018. J. Clean. Prod. 2020, 276, 123249. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Squadrone, S.; Prearo, M.; Brizio, P.; Gavinelli, S.; Pellegrino, M.; Scanzio, T.; Guarise, S.; Benedetto, A.; Abete, M.C. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 2013, 90, 358–365. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Fudala, J.; Strzelecka-Jastrzab, E.; Hlawiczka, S.; Panasiuk, D.; Nitter, S.; Pregger, T.; Pfeiffer, H.; Friedrich, R. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos. Environ. 2007, 41, 8557–8566. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- Suvarapu, L.N.; Baek, S.-O. Determination of heavy metals in the ambient atmosphere: A review. Toxicol. Ind. Health 2017, 33, 79–96. [Google Scholar] [CrossRef]
- Penezic, A.; Milinkovic, A.; Alempijvic, S.B.; Zuzul, S.; Frka, S. Atmospheric deposition of biologically relevant trace metals in the eastern Adriatic costal area. Chemosphere 2021, 283, 131178. [Google Scholar] [CrossRef]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as bioindicator of heavy metal pollution in three European cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef]
- Dimitriou, K.; Kassomenos, P. Airborne heavy metals in two cities of North Rhine Westphalia–Performing inhalation cancer risk assessment in terms of atmospheric circulation. Chemosphere 2017, 186, 78–87. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenko, J.; Melilo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- McConell, J.R.; Edwards, R. Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci. USA 2008, 105, 12140–12144. [Google Scholar] [CrossRef] [Green Version]
- EC. Ambient Air Pollution by As, Cd and Ni Compounds, Position Paper. 2001. Available online: https://ec.europa.eu/environment/air/pdf/pp_as_cd_ni.pdf (accessed on 11 November 2021).
- WHO. Regional Office for Europe & Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution. World Health Organization. Regional Office for Europe. 2007. Available online: https://apps.who.int/iris/handle/10665/107872 (accessed on 20 March 2022).
- Ilyin, I.; Rozovskaya, O.; Sokovykh, V.; Travnikov, O.; Varygina, M.; Aas, W.; Uggerud, H.T. Heavy Metals: Transboundary Pollution of the Environment. EMEP Status Report 2/2010, Kjeller, Moscow. 2010. Available online: https://www.msceast.org/reports/2_2010.pdf (accessed on 16 November 2022).
- Al Mamun, A.; Cheng, I.; Zhag, L.; Dabek-Zlotorzynska, E.; Charland, J.-P. Overview of size distribution, concentration, and dry deposition of airborne particulate elements measured worldwide. Environ. Rev. 2020, 28, 77–88. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Khalili, N.; Rezaei, N. Effects of lead and cadmium on the immune system and cancer progression. J. Environ. Health Sci. Eng. 2020, 18, 335–343. [Google Scholar] [CrossRef]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans: Inorganic and Organic Lead Compounds; IARC mono-graphs on the evaluation of carcinogenic risks to humans; International Agency for Research on Cancer: Lyon, France, 2006. [Google Scholar]
- WHO. Air Quality Guidelines, 2nd ed.; World Health Organization: Copenhagen, Denmark, 2000. [Google Scholar]
- EC. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L 152/1–152/44. [Google Scholar]
- EC. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. Eur. Union 2004, L 23/3–23/16. [Google Scholar]
- Ouyang, X.; Ma, J.; Zhang, R.; Li, P.; Gao, M.; Sun, C.; Weng, L.; Chen, Y.; Yan, S.; Li, Y. Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. J. Hazard. Mater. 2022, 431, 128624. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Tan, C.; Wu, L.; Luo, Y.; He, Q.; Liang, Y.; Peng, B.; Christie, P. Atmospheric deposition of cadmium in an urbanized region and the effect of simulated wet precipitation on the uptake performance of rice. Sci. Total Environ. 2020, 700, 134513. [Google Scholar] [CrossRef] [PubMed]
- Dala-Paula, B.M.; Custódio, F.B.; Knupp, E.A.N.; Palmieri, H.E.L.; Silva, J.B.B.; Glória, M.B.A. Cadmium, copper and lead levels in different cultivars of lettuce and soil from urban agriculture. Environ. Pollut. 2019, 242, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Guo, Z.; Xiao, X.; Peng, C.; Shi, L.; Ran, H.; Xu, W. Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicol. Environ. Saf. 2019, 180, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Sanaeifar, A.; Zhu, F.; Sha, J.; Li, X.; He, Y.; Zhan, Z. Rapid quantitative characterization of tea seedlings under lead-containing aerosol particles stress using Vis-NIR spectra. Sci. Total Environ. 2022, 802, 149824. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xie, P.; Yang, J.; Liu, F.; Hu, H.; Du, J.; Zhang, K.; Lin, L.; Zhang, H. Relative contribution of environmental medium and internal organs to lead accumulation of wheat grain. Sci. Total Environ. 2022, 818, 151832. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Yardley, R.E.; Mukunthan, D.; Butterfield, D.M.; Williams, M.; Woods, P.T.; Brown, A.S.; Goddard, S.-L. Twenty-five years of nationwide ambient metals measurement in the United Kingdom: Concentration levels and trends. Environ. Monit. Assess. 2008, 142, 127–140. [Google Scholar] [CrossRef]
- Hůnová, I. Ambient Air Quality in the Czech Republic: Past and Present. Atmosphere 2020, 11, 214. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Yuan, H.; Liu, B.; Peng, J.; Xu, L.; Yang, D. Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 2020, 12, 5747–5766. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: Oxford, UK, 1989; p. 561. ISBN 0-19-505013-4. [Google Scholar]
- Tolasz, R.; Míková, T.; Valeriánová, A.; Voženílek, V. Climate Atlas of Czechia; Český hydrometeorologický ústav; Palacký University Olomouc: Olomouc, Czech Republic, 2007; p. 255. ISBN 978-80-86690-26-1. [Google Scholar]
- Hůnová, I.; Kurfürst, P.; Maznová, J.; Coňková, M. Contribution of occult precipitation to sulphur deposition in the Czech Republic. Erdkunde 2011, 65, 247–259. [Google Scholar] [CrossRef]
- Hůnová, I.; Novák, M.; Kurfürst, P.; Škáchová, H.; Štěpánová, M.; Přechová, E.; Komárek, A.; Čuřík, J.; Veselovský, F.; Bohdálková, L. Contribution of rime to atmospheric sulphur deposition in Central Europe: A combined empirical and modelling approach. Atmos. Environ. 2020, 270, 118877. [Google Scholar] [CrossRef]
- Hůnová, I.; Kurfürst, P.; Vlček, O.; Stráník, V.; Stoklasová, P.; Schovánková, J.; Srbová, D. Towards a better spatial quantification of nitrogen deposition: A case study for Czech forests. Environ. Pollut. 2016, 213, 1028–1041. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley: New York, NY, USA, 2016; p. 1152. ISBN 978-1-118-94740-1. [Google Scholar]
- Wesely, M.L.; Hicks, B.B. A review of the current status of knowledge on dry deposition. Atmos. Environ. 2000, 34, 2261–2282. [Google Scholar] [CrossRef]
- He, H.; Lu, W. Comparison of three prediction strategies within PM2.5 and PM10 monitoring networks. Atmos. Pollut. Res. 2020, 11, 590–597. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Rogula-Kozłowska, W.; Zajusz-Zubek, E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ. Monit. Assess. 2010, 168, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Dvořáková, M.; Fiala, J.; Livorová, H.; Srněnský, R. Vypracování Postupů Pro Zohlednění Druhů Pokryvu Terénu Při Odhadu Rychlosti Suché Depozice SO2 a Prašného Aerosol; Zdokonalení metod územního a časového hodnocení kvality ovzduší; CHMI: Praha, Czech Republic, 1995. [Google Scholar]
- CHMI. Air pollution in the Czech Republic in 2019. Czech Hydrometeorological Institute, Prague. 2021. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/grafroc_CZ.html (accessed on 20 November 2022).
- Connan, O.; Maro, D.; Hébert, D.; Roupsard, P.; Goujan, R.; Letelier, B.; Le Cavalier, S. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmos. Environ. 2013, 67, 394–403. [Google Scholar] [CrossRef]
- Lynam, M.M.; Dvonch, J.T.; Hall, N.L.; Morishita, M.; Barres, J.A. Trace elements and major ions in atmospheric wet and dry deposition across central Illinois, USA. Air Qual. Atmos. Health 2015, 8, 135–147. [Google Scholar] [CrossRef]
- Morselli, L.; Olivieri, P.; Brusori, B.; Passarini, F. Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy. Environ. Pollut. 2003, 124, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Sakata, M.; Maramuto, K.; Narukawa, M.; Asakura, K. Regional variations in wet and dry deposition fluxes of trace elements in Japan. Atmos. Environ. 2006, 40, 521–531. [Google Scholar] [CrossRef]
- Petroff, A.; Maillat, A.; Amielh, M.; Anselmet, F. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmos. Environ. 2008, 42, 3625–3653. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere; John Wiley: New York, NY, USA, 1986; ISBN 10: 0471882275. [Google Scholar]
- Mohan, S.M. An overview of particulate dry deposition: Measuring methods, deposition velocity and controlling factors. Int. J. Environ. Sci. Technol. 2016, 13, 387–402. [Google Scholar] [CrossRef]
- Yi, S.-M.; Shahin, U.; Sivadechathep, J.; Sofuoglu, S.C.; Holsen, T.M. Overall elemental dry deposition velocities measured around Lake Michigan. Atmos. Environ. 2001, 35, 1133–1140. [Google Scholar] [CrossRef] [Green Version]
- EEA. Air Quality in Europe-2020 Report. EEA Report 09/2020. European Environment Agency, Luxembourg. 2020. Available online: https://www.actu-environnement.com/media/pdf/36559.pdf (accessed on 15 November 2022).
- Von Storch, H.; Costa-Cabral, M.; Hagner, C.; Feser, F.; Pacyna, J.; Pacyna, E.; Kolb, S. Four decades of gasoline lead emissions and control policies in Europe: A retrospective assessment. Sci. Total Environ. 2003, 311, 151–176. [Google Scholar] [CrossRef] [PubMed]
- CHMI. Czech Informative Inventory Report 2021. Submission under the UNECE Convention on Long-Range Transboundary Air Pollution. Czech Hydrometeorological Institute, Prague. 2021. Available online: https://www.chmi.cz/files/portal/docs/uoco/oez/embil/CZ-informativni-zprava-emisni-inventury-2021.pdf (accessed on 10 November 2022).
- Trnka, M.; Možný, M.; Jurečka, F.; Balek, J.; Semerádová, D.; Hlavinka, P.; Štěpánek, P.; Farda, A.; Skalák, P.; Cienciala, E.; et al. Observed and estimated consequences of climate change for the fire weather regime in the moist-temperate climate of the Czech Republic. Agric. For. Meteorol. 2021, 310, 108583. [Google Scholar] [CrossRef]
- Buntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- Giorgi, F.; Meleux, F. Modelling the regional effects of climate change on air quality. C. R. Geosci. 2007, 339, 721–733. [Google Scholar] [CrossRef]
- Tolasz, R.; Čekal, R.; Škáchová, H.; Vlasáková, L. The year 2019 in Czechia. Meteorol. Zprávy 2020, 73, 1–11. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; p. 3056. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Pišoft, P.; Štěpánek, P.; Bělínová, M.; Dobrovolný, P. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theor. Appl. Climatol. 2012, 110, 17–34. [Google Scholar] [CrossRef]
- EMEP; The Emission Datrabase. EMEP Centre on Emission Inventories and Projections. 2022. Available online: https://www.ceip.at/webdab-emission-database (accessed on 1 December 2022).
- Hůnová, I. Ambient air quality for the territory of the Czech Republic in 1996–1999 expressed by three essential factors. Sci. Total Environ. 2003, 303, 245–251. [Google Scholar] [CrossRef]
- Kozáková, J.; Pokorná, P.; Vodička, P.; Ondráčková, L.; Ondráček, J.; Křůmal, K.; Mikuška, P.; Hovorka, J.; Moravec, P.; Schwarz, J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ. Sci. Pollut. Res. 2019, 26, 1675–1692. [Google Scholar] [CrossRef]
- Volná, V.; Hladký, D.; Seibert, R.; Krejčí, B. Transboundary Air Pollution Transport of PM10 and Benzo[a]pyrene in the Czech–Polish Border Region. Atmosphere 2022, 13, 341. [Google Scholar] [CrossRef]
- Suchara, I.; Sucharova, J.; Hola, M.; Reimann, C.; Boyd, R.; Filzmoser, P.; Englmaier, P. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic. Sci. Total Environ. 2011, 409, 2281–2297. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.; Holy, M.; Pesch, R.; Harmens, H.; Ilyin, I.; Steinnes, E.; Alber, L.; Aleksiayenak, Y.; Blum, O.; Coskun, M.; et al. Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J. Soils Sediments 2010, 10, 1572–1584. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Liu, C.; Fang, Y. Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China. Int. J. Environ. Res. Public Health 2017, 14, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmens, H.; Norris, D.A.; Sharps, K.; Mills, G.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Cucu-Man, S.M.; Dam, M.; de Temmerman, L.; et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ. Pollut. 2015, 200, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Cimova, N.; Novak, M.; Chrastny, V.; Curik, J.; Veselovsky, F.; Blaha, V.; Prechova, E.; Pasava, J.; Houskova, M.; Bohdalkova, L. Lead fluxes and 206Pb/207Pb isotope ratios in rime and snow collected at remote mountain-top locations (Czech Republic, Central Europe): Patterns and sources. Atmos. Environ. 2016, 143, 51–59. [Google Scholar] [CrossRef]
- Hůnová, I.; Brabec, M.; Geletič, J.; Malý, M.; Dumitrescu, A. Statistical analysis of the effects of forests on fog. Sci. Total Environ. 2021, 781, 146675. [Google Scholar] [CrossRef]
- Hůnová, I.; Brabec, M.; Malý, M.; Dumitrescu, A.; Geletič, J. Terrain and its effects on fog occurrence. Sci. Total Environ. 2021, 768, 144359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hůnová, I.; Kurfürst, P.; Schreiberová, M.; Vlasáková, L.; Škáchová, H. Atmospheric Deposition of Lead and Cadmium in a Central European Country over the Last Three Decades. Atmosphere 2023, 14, 19. https://doi.org/10.3390/atmos14010019
Hůnová I, Kurfürst P, Schreiberová M, Vlasáková L, Škáchová H. Atmospheric Deposition of Lead and Cadmium in a Central European Country over the Last Three Decades. Atmosphere. 2023; 14(1):19. https://doi.org/10.3390/atmos14010019
Chicago/Turabian StyleHůnová, Iva, Pavel Kurfürst, Markéta Schreiberová, Leona Vlasáková, and Hana Škáchová. 2023. "Atmospheric Deposition of Lead and Cadmium in a Central European Country over the Last Three Decades" Atmosphere 14, no. 1: 19. https://doi.org/10.3390/atmos14010019
APA StyleHůnová, I., Kurfürst, P., Schreiberová, M., Vlasáková, L., & Škáchová, H. (2023). Atmospheric Deposition of Lead and Cadmium in a Central European Country over the Last Three Decades. Atmosphere, 14(1), 19. https://doi.org/10.3390/atmos14010019