Manganese Slag Amendment Reduces Greenhouse Gas Emissions from Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Design
2.1.1. Location
2.1.2. Experiment Design
2.1.3. Sampling and Measurement
Soil Sampling and Soil Physicochemical Parameter Measurement
Greenhouse Gas Sampling and Measurements
Agronomic and yield characteristics:
2.2. Data Analysis
3. Results
3.1. Physicochemical Parameters of Different Slags and Slag-Treated Paddy Soils
3.2. Grain Yield and Yield Components
3.3. Greenhouse Gas Emissions of Paddy Soil with Different Slag Treatments
3.4. Relationships of Greenhouse Gas Emissions and Semiconductor Minerals in Paddy Soil
4. Discussion
4.1. Effect of Slag Amendments on GHG Emissions
4.2. GHG Emission Dynamics and Their Potential Relationship with Soil Minerals
4.3. Effects of Slag Amendments on Rice Productivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WMO. Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021; WMO: Geneva, Switzerland, 2022; pp. 1–10. [Google Scholar]
- Portner, H.O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegria, A.; Criag, M.; Langsdorf, S.; Loschke, S.; Moller, V.; et al. Summary for Policymakes; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2022. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. In Annual Review of Environment and Resources; Gadgil, A., Liverman, D.M., Eds.; Annual Reviews: Palo Alto, USA, 2012. [Google Scholar]
- Carlson, K.M.; Gerber, J.S.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Brauman, K.A.; Havlik, P.; O’Connell, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.a.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Jiang, H.; Xiang, W.; Chang, J.; Deng, X.; et al. Methane emissions from rice paddies natural wetlands, lakes in China: Synthesis new estimate. Glob. Chang. Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, Y.; Chen, H.; Xiang, J.; Zhang, Y. Innovation and practice of high-yield rice cultivation technology in China. Sci. Agric. Sin. 2015, 48, 3404–3414. (In Chinese) [Google Scholar]
- Ainsworth, E.A.; Ort, D.R. How Do We Improve Crop Production in a Warming World? Plant Physiol. 2010, 154, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, H. Increased rice yield and reduced greenhouse gas emissions through alternate wetting and drying in a triple-cropped rice field in the Mekong Delta. Sci. Total Environ. 2022, 842, 156958. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Lu, N.; Tian, H.; Fu, B.; Yu, H.; Piao, S.; Chen, S.; Li, Y.; Li, X.; Wang, M.; Li, Z.; et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Chang. 2022, 12, 847–853. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, L.; Liu, L.; Sheng, F.; Cao, C.; Li, C. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China. Agric. Ecosyst. Environ. 2021, 322, 107650. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, F.; Zhang, K.; Qin, R.; Zhang, W.; Sun, G.; Huang, J. Effects of soil mulching on staple crop yield and greenhouse gas emissions in China: A meta-analysis. Field Crops Res. 2022, 284, 108566. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, L.; Wang, B.; Xiang, J.; Gao, M.; Fu, Z.; Long, P.; Luo, H.; Huang, C. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Sci. Total Environ. 2022, 813, 152550. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Ahmed, M.N.; Akter, M.; Singh, U.; Sander, B.O. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. J. Environ. Manag. 2022, 307, 114520. [Google Scholar] [CrossRef]
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?—A global meta-analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef]
- Ghisman, V.; Muresan, A.C.; Buruiana, D.L.; Axente, E.R. Waste slag benefits for correction of soil acidity. Sci. Rep. 2022, 12. [Google Scholar] [CrossRef]
- Joulazadeh, M.H.; Joulazadeh, F. Slag: Value added steel industry byproducts. Arch. Metall. Mater. 2010, 55, 1137–1145. [Google Scholar] [CrossRef]
- Chen, J.; Xing, Y.; Wang, Y.; Zhang, W.; Guo, Z.; Su, W. Application of iron and steel slags in mitigating greenhouse gas emissions: A review. Sci. Total Environ. 2022, 844, 157041. [Google Scholar] [CrossRef]
- Das, S.; Galgo, S.J.; Alam, M.A.; Lee, J.G.; Hwang, H.Y.; Lee, C.H.; Kim, P.J. Recycling of ferrous slag in agriculture: Potentials and challenges. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1247–1281. [Google Scholar] [CrossRef]
- Wang, W.; Sardans, J.; Lai, D.Y.F.; Wang, C.; Zeng, C.; Tong, C.; Liang, Y.; Peñuelas, J. Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crops Res. 2015, 171, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Nan, L.; Wang, Q.; Wang, W.; Hai, J.; Yu, X.; Cao, Q.; Huang, J.; Zhang, R.; Han, Y.; et al. Soil Respiration of Paddy Soils Were Stimulated by Semiconductor Minerals. Front. Plant Sci. 2022, 13, 941144. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, A.; Singh, S.; Malyan, S.K.; Baram, S.; Sharma, J.; Singh, R.; Pugazhendhi, A. Industrial wastes: Fly ash, steel slag and phosphogypsum- potential candidates to mitigate greenhouse gas emissions from paddy fields. Chemosphere 2020, 241, 124824. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.; Wang, W.; Chen, J.; Luo, H.; Chen, W.; Ma, D.; An, X.; Chen, F.; Cheng, L.; et al. Anaerobic oxidation of methane (AOM) driven by multiple electron acceptors in constructed wetland and the related mechanisms of carbon, nitrogen, sulfur cycles. Chem. Eng. J. 2022, 433, 133663. [Google Scholar] [CrossRef]
- Ali, M.A.; Lee, C.H.; Kim, S.Y.; Kim, P.J. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation. Waste Manag. 2009, 29, 2759–2764. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Aviles, P.; Ida, J.; Toda, T.; Cuevas-Rodriguez, G. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge. J. Environ. Manag. 2018, 222, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Lu, J.; Qian, L.; Xie, L.; Zhou, H.; Zhu, C. Synthesis of manganese ore/Co3O4 composites by sol-gel method for the catalytic oxidation of gaseous chlorobenzene. J. Saudi Chem. Soc. 2021, 25, 101229. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yue, D.B.; Wang, X.; Song, W.F. Mechanism of oxidation and catalysis of organic matter abiotic humification in the presence of MnO2. J. Environ. Sci. 2019, 77, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, X.; Wu, F.; Hu, Y.; Wang, M.; Chen, T.; Zhao, X.; Yang, G.; Chen, Y.; Hu, Y. Effects of rape straw returing on root distrubution and yield of rice. J. Appl. Envrionmental Biol. 2021, 27, 96–104. (In Chinese) [Google Scholar]
- Bai, Y.; Hu, Y.; Peng, Y.; Yang, G.; Jiang, F.; Li, C.; Hai, J.; Yang, G.; Hu, Y. Greenhouse gas emission of main rice cultivars in hilly area of central sichuan basin. Acta Agric. Boreali-Occident. Sin. 2019, 28, 1087–1092. [Google Scholar]
- Gogoi, N.; Baruah, K.K.; Gogoi, B.; Gupta, P.K. Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India. Chemosphere 2005, 59, 1677–1684. [Google Scholar] [CrossRef]
- McMillan, A.M.S.; Goulden, M.L.; Tyler, S.C. Stoichiometry of CH4 and CO2 flux in a California rice paddy. J. Geophys. Res. Biogeosciences 2007, 112, G01008. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.; Li, Y.; Ding, H.; Xu, X.; Hochella, M.F. Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. Proc. Natl. Acad. Sci. USA 2019, 116, 9741–9746. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Abdellatif, H.; Zhang, J.; Wan, Y.; Zeng, Q.; Chen, J.; Ni, J.; Zhang, Y.; Shengzhe, E.; Ni, C. Photocatalytic nitrogen-oxide conversion in red soil. J. Clean. Prod. 2021, 326, 129377. [Google Scholar] [CrossRef]
- Kumar, Y.; Naresh, R.K.; Dhaliwal, S.S.; Sharma, V.; Kumar, R.; Mandal, A. Impact of NPK Enriched Bio-Compost on Rice Yield and Sustainability of Nutrients in Sandy Loam Soils of India. Commun. Soil Sci. Plant Anal. 2022, 53, 2996–3007. [Google Scholar] [CrossRef]
- Prerna, D.I.; Govindaraju, K.; Tamilselvan, S.; Kannan, M.; Vasantharaja, R.; Chaturvedi, S.; Shkolnik, D. Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol. Biochem. 2021, 162, 564–580. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, A.K.; Swain, C.K.; Dhal, B.; Kumar, A.; Tripathi, R.; Shahid, M.; Lal, B.; Gautam, P.; Dash, G.K.; et al. Silicon enhances yield and nitrogen use efficiency of tropical low land rice. Agron. J. 2020, 112, 758–771. [Google Scholar] [CrossRef]
- Tran, X.; Cuong, U.; Datta, H.; Tran, A.; Cong, H. Effects of Silicon-Based Fertilizer on Growth, Yield and Nutrient Uptake of Rice in Tropical Zone of Vietnam. Rice Sci. 2017, 24, 283–290. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, N.; Wang, W.; Sun, J.; Zhu, L. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO(2)nanoparticles. Front. Environ. Sci. Eng. 2020, 14, 11785. [Google Scholar] [CrossRef]
Slag Type | pH | TN % | TP % | SOM mg/kg |
---|---|---|---|---|
Steel slag | 7.61 ± 0.04 | 0.153 a ± 0.0009 | 0.068 a ± 0.0011 | 2.369 a ± 0.050 |
Manganese slag | 7.69 ± 0.02 | 0.135 c ± 0.0006 | 0.066 ab ± 0.0004 | 2.015 c ± 0.083 |
Titanium slag | 7.83 ± 0.02 | 0.141 b ± 0.0008 | 0.064 bc ± 0.0005 | 2.261 ab ± 0.097 |
CK | 7.58 ± 0.01 | 0.137 c ± 0.0007 | 0.062 c ± 0.0004 | 2.178 ab ± 0.065 |
Slag Type | SiO2 | Al2O3 | Fe2O3 | K2O | TiO2 | CaO | P2O5 | SO3 | MgO | BaO | MnO | Rb2O | ZrO2 | Na2O | Nb2O5 | F | V2O5 | NiO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Steel slag | 19.60 | 4.88 | 17.22 | 0.10 | 1.89 | 38.96 | 1.72 | 1.21 | 10.37 | 0.06 | 2.71 | / | 0.03 | 0.11 | 0.09 | 0.30 | 0.29 | 0.20 |
Manganese slag | 28.17 | 7.85 | 4.89 | 1.61 | 0.39 | 17.83 | 0.50 | 32.21 | 2.06 | 0.09 | 3.68 | 0.01 | / | 0.51 | / | / | / | / |
Titanium slag | 1.69 | 1.36 | 4.00 | 0.03 | 87.92 | 0.25 | / | 1.64 | 0.56 | / | 1.93 | / | 0.32 | 0.14 | 0.11 | 0.03 | 0.02 | 0.01 |
Slag Type | Height (cm) | Tillers (No.) | 1000-Grain Weight (g) | Yield (kg/ha) |
---|---|---|---|---|
Steel slag | 136 a ± 2.7 | 12 a ± 3.0 | 29.8 a ± 0.5 | 7948 a ± 287 |
Manganese slag | 123 c ± 1.3 | 8.7 a ± 0.6 | 29.1 a ± 0.7 | 7897 a ± 222 |
Titanium slag | 130 b ± 2.4 | 9 a ± 1.0 | 29.5 a ± 0.9 | 7900 a ± 222 |
CK | 125 c ± 3.6 | 10.3 a ± 1.0 | 29.4 a ± 0.8 | 7872 a ± 287 |
Treatment | Cumulative Emissions (kg∙hm−2) | Global Warming Potential (kg.hm−2) | ||
---|---|---|---|---|
CH4 | CO2 | N2O | ||
Steel slag | 35.14 ± 24.61 | 624 ± 2322 | 0.99 ± 2.58 | 1246 ± 1372 |
Manganese slag | 22.41 ± 14.37 | 37 ± 3668 | −0.98 ± 1.23 | 368 ± 728 |
Titanium slag | 30.77 ± 12.69 | 1191 ± 3211 | 1.77 ± 3.05 | 1330 ± 1163 |
CK | 44.46 ± 19.18 | 717 ± 2463 | −0.93 ± 1.43 | 998 ± 915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Dai, Q.; Hai, J.; Wang, Q.; Liao, D.; Liu, G.; Wang, Y.; Huang, J.; Zhang, R.; Siddig, A.A.H.; et al. Manganese Slag Amendment Reduces Greenhouse Gas Emissions from Paddy Soil. Atmosphere 2023, 14, 131. https://doi.org/10.3390/atmos14010131
Bai Y, Dai Q, Hai J, Wang Q, Liao D, Liu G, Wang Y, Huang J, Zhang R, Siddig AAH, et al. Manganese Slag Amendment Reduces Greenhouse Gas Emissions from Paddy Soil. Atmosphere. 2023; 14(1):131. https://doi.org/10.3390/atmos14010131
Chicago/Turabian StyleBai, Yinping, Qianli Dai, Jiangbo Hai, Qing Wang, Dahang Liao, Guotong Liu, Yinjia Wang, Jing Huang, Rongping Zhang, Ahmed Ali Hassabelkreem Siddig, and et al. 2023. "Manganese Slag Amendment Reduces Greenhouse Gas Emissions from Paddy Soil" Atmosphere 14, no. 1: 131. https://doi.org/10.3390/atmos14010131
APA StyleBai, Y., Dai, Q., Hai, J., Wang, Q., Liao, D., Liu, G., Wang, Y., Huang, J., Zhang, R., Siddig, A. A. H., Bao, W., & Yang, G. (2023). Manganese Slag Amendment Reduces Greenhouse Gas Emissions from Paddy Soil. Atmosphere, 14(1), 131. https://doi.org/10.3390/atmos14010131