Spatiotemporal Dynamic Correlation Characteristics and Driving Factors of Major Air Pollutant Emissions in China
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Study Area
2.2. Data Sources
2.3. Rate of Change of Pollutant Emissions
2.4. Trend Analysis
2.5. GTWR Model
3. Results and Discussion
3.1. Spatial and Temporal Patterns of Air Pollutant Emissions in China
3.1.1. Temporal Changes in Air Pollutant Emissions
3.1.2. Spatial Distribution of Air Pollutant Emissions in China
3.2. Air Pollutant Emissions by Sector in China
3.2.1. Temporal Changes in Air Pollutant Emissions
3.2.2. Spatial Variation in Emissions by Sector
3.3. Drivers of Atmospheric Pollutant Emissions
Model Construction
3.4. Spatial Evolution of Drivers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Chen, Z. Science of the Total Environment Cost of Economic Growth: Air Pollution and Health Expenditure. Sci. Total Environ. 2021, 755, 142543. [Google Scholar] [CrossRef] [PubMed]
- Hadley, M.B.; Vedanthan, R.; Fuster, V. Air Pollution and Cardiovascular Disease: A Window of Opportunity. Nat. Rev. Cardiol. 2019, 15, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. Articles the Effect of Air Pollution on Deaths, Disease Burden, and Life Expectancy across China and Its Provinces, 1990–2017: An Analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y. Reexamining the Relationships among Urbanization, Industrial Structure, and Environmental Pollution in China—New Evidence Using the Dynamic Threshold Panel Model. Energy Rep. 2020, 6, 28–39. [Google Scholar] [CrossRef]
- Mohaddeseh, A.; Feng, F.; Chongyang, Z. Environmental Policy Innovation in China and Examining Its Dynamic Relations with Air Pollution and Economic Growth Using SEM Panel Data. Environ. Sci. Pollut. Res. 2020, 27, 9987–9998. [Google Scholar]
- State Council. Notice of the State Council on the Issuance of the Action Plan for the Prevention and Control of Air Pollution. Available online: http://www.gov.cn/zhengce/content/2013-09/13/content_4561.htm (accessed on 10 August 2022).
- Geng, G.; Xiao, Q.; Zheng, Y.; Tong, D.; Zhang, Y.; Zhang, X.; Zhang, Q.; He, K.; Liu, Y. Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China. Sci. China Earth Sci. 2019, 62, 1872–1884. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xue, W.; Wang, Y.; Lei, Y.; Feng, T.; Cai, Z. Health Benefit Evaluation for Air Pollution Prevention and Control Action Plan in China. Environ. Sci. 2019, 40, 2961–2966. [Google Scholar] [CrossRef]
- Feng, Y.; Ning, M.; Lei, Y.; Sun, Y.; Liu, W.; Wang, J. Defending Blue Sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on Air Quality Improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [Google Scholar] [CrossRef]
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.-P.; Super, I.; Denier van der Gon, H. CAMS-REG-v4: A State-of-the-Art High-Resolution European Emission Inventory for Air Quality Modelling. Earth Syst. Sci. Data 2022, 14, 491–515. [Google Scholar] [CrossRef]
- Zhao, Y.; Xi, M.; Zhang, Q.; Dong, Z.; Ma, M.; Zhou, K.; Xu, W.; Xing, J.; Zheng, B.; Wen, Z.; et al. Decline in Bulk Deposition of Air Pollutants in China Lags behind Reductions in Emissions. Nat. Geosci. 2022, 15, 190–195. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Yi, H.; Tang, X.; Yu, Q.; Zhao, S.; Gao, F.; Zhou, Y.; Zhong, T.; Wang, Y. Trends in Air Pollutant Emissions from the Sintering Process of the Iron and Steel Industry in the Fenwei Plain and Surrounding Regions in China, 2014–2017. Chemosphere 2022, 291, 132917. [Google Scholar] [CrossRef]
- He, C.; Hong, S.; Zhang, L.; Mu, H.; Xin, A.; Zhou, Y.; Liu, J.; Liu, N.; Su, Y.; Tian, Y.; et al. Global, Continental, and National Variation in PM2.5, O3, and NO2 Concentrations during the Early 2020 COVID-19 Lockdown. Atmos. Pollut. Res. 2021, 12, 136–145. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A Comprehensive Analysis of the Spatio-Temporal Variation of Urban Air Pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, D.; Cheng, J.; Davis, S.J.; Yu, S.; Yarlagadda, B.; Clarke, L.E.; Brauer, M.; Cohen, A.J.; Kan, H.; et al. Role of Climate Goals and Clean-Air Policies on Reducing Future Air Pollution Deaths in China: A Modelling Study. Lancet Planet. Health 2022, 6, e92–e99. [Google Scholar] [CrossRef]
- Bakır, H.; Ağbulut, Ü.; Gürel, A.E.; Yıldız, G.; Güvenç, U.; Soudagar, M.E.M.; Hoang, A.T.; Deepanraj, B.; Saini, G.; Afzal, A. Forecasting of Future Greenhouse Gas Emission Trajectory for India Using Energy and Economic Indexes with Various Metaheuristic Algorithms. J. Clean. Prod. 2022, 360, 131946. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, X.; Huang, Z.; Qu, K.; Shi, W.; Peng, Z.; Zeng, L.; Xie, S.; Zhang, Y. Impacts of Synoptic Circulation on Surface Ozone Pollution in a Coastal Eco-City in Southeastern China during 2014-2019. J. Environ. Sci. 2023, 127, 143–157. [Google Scholar] [CrossRef]
- Liu, L.-J.; Liang, Q.-M.; Creutzig, F.; Cheng, N.; Liu, L.-C. Electricity End-Use and Construction Activity Are Key Leverage Points for Co-Controlling Greenhouse Gases and Local Pollution in China. Clim. Change 2021, 167, 19. [Google Scholar] [CrossRef]
- He, C.; Hong, S.; Mu, H.; Tu, P.; Yang, L.; Ke, B.; Huang, J. Characteristics and Meteorological Factors of Severe Haze Pollution in China. Adv. Meteorol. 2021, 2021, e6680564. [Google Scholar] [CrossRef]
- Zhou, X.; Strezov, V.; Jiang, Y.; Kan, T.; Evans, T. Temporal and Spatial Variations of Air Pollution across China from 2015 to 2018. J. Environ. Sci. 2022, 112, 161–169. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Wang, L.; Zou, H. Spatial Temporal Patterns and Driving Factors of Industrial Pollution and Structures in the Yangtze River Economic Belt. Chemosphere 2022, 303, 134996. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, C.; Liu, C.; Hu, Q. Variability of PM2.5 and O3 Concentrations and Their Driving Forces over Chinese Megacities during 2018–2020. J. Environ. Sci. 2023, 124, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, K.; Liu, Z.; Zhang, Y.; Shao, T.; Zhang, H. Coordinated Control of PM 2.5 and O3 Is Urgently Needed in China after Implementation of the “Air Pollution Prevention and Control Action Plan. Chemosphere 2021, 270, 129441. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xiao, J.; Shen, Y.; Yamaguchi, Y. Quantifying the Spatial Differences of Landscape Change in the Hai River Basin, China, in the 1990s. Int. J. Remote Sens. 2012, 33, 4482–4501. [Google Scholar] [CrossRef]
- He, C.; Yang, L.; Cai, B.; Ruan, Q.; Hong, S.; Wang, Z. Impacts of the COVID-19 Event on the NOx Emissions of Key Polluting Enterprises in China. Appl. Energy 2021, 281, 116042. [Google Scholar] [CrossRef]
- Shi, Y.; Matsunaga, T.; Yamaguchi, Y.; Zhao, A.; Li, Z.; Gu, X. Science of the Total Environment Long-Term Trends and Spatial Patterns of PM 2. 5 -Induced Premature Mortality in South and Southeast Asia from 1999 to 2014. Sci. Total Environ. 2018, 631–632, 1504–1514. [Google Scholar] [CrossRef]
- Bai, K.; Ma, M.; Chang, N.B.; Gao, W. Spatiotemporal Trend Analysis for Fine Particulate Matter Concentrations in China Using High-Resolution Satellite-Derived and Ground-Measured PM2.5 Data. J. Environ. Manag. 2019, 233, 530–542. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Zhang, S.; Long, R.; Zhang, X.; Sun, Z. Determinants of Haze Pollution: An Analysis from the Perspective of Spatiotemporal Heterogeneity. J. Clean. Prod. 2019, 222, 768–783. [Google Scholar] [CrossRef]
- Wu, X.; Yang, S.; Yin, S.; Xu, H. Spatial-Temporal Dynamic Characteristics and Its Driving Mechanism of Urban Built-Up Area in Yangtze River Delta Based on GTWR Model. Resour. Environ. Yangtze Basin 2021, 30, 2594–2606. [Google Scholar] [CrossRef]
- Shen, S.; Wang, C. Decomposition Analysis on the Air Pollutant Baseline Emission Factors in China’s Power Sector. Energy Procedia 2017, 105, 3355–3362. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Qiu, Y.; Liu, L.; Dong, Z. Spatially Di Ff Erentiated e Ff Ects of Socioeconomic Factors on China’s NOx Generation from Energy Consumption: Implications for Mitigation Policy. J. Environ. Manag. 2019, 250, 109417. [Google Scholar] [CrossRef]
- Chang, H.Y.; Wang, W.; Yu, J. Revisiting the Environmental Kuznets Curve in China: A Spatial Dynamic Panel Data Approach. Energy Econ. 2021, 104, 105600. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yang, X.; Zou, B.; Wang, J. Spatial Variations of PM2.5 in Chinese Cities for the Joint Impacts of Human Activities and Natural Conditions: A Global and Local Regression Perspective. J. Clean. Prod. 2018, 203, 143–152. [Google Scholar] [CrossRef]
- Qiu, Y. Correlation between Air Pollutant Distribution and Greenland Landscape Pattern in Wuhan. Master’s Thesis, Hua Zhong Agricultural University, Wuhan, China, 2017. [Google Scholar]
- Shi, T.; Zhang, W.; Zhou, Q.; Wang, K. Industrial Structure, Urban Governance and Haze Pollution: Spatiotemporal Evidence from China. Sci. Total Environ. 2020, 742, 139228. [Google Scholar] [CrossRef]
- Li, R.; Fu, H.; Cui, L.; Li, J.; Wu, Y.; Meng, Y.; Wang, Y.; Chen, J. The Spatiotemporal Variation and Key Factors of SO2 in 336 Cities across China. J. Clean. Prod. 2019, 210, 602–611. [Google Scholar] [CrossRef]
- Bo, X. Emission Characteristics and Environmental Impacts of Air Pollutants in China’s Iron and Steel Industry. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2020. [Google Scholar]
- Liu, J.; Li, S.; Ji, Q. Regional Differences and Driving Factors Analysis of Carbon Emission Intensity from Transport Sector in China. Energy 2021, 224, 120178. [Google Scholar] [CrossRef]
- Du, Q.; Lu, X.; Yu, M.; Yan, Y.; Wu, M. Low-Carbon Development of the Construction Industry in China’s Pilot Provinces. Pol. J. Environ. Stud. 2020, 29, 2617–2629. [Google Scholar] [CrossRef]
- Chuai, X.; Lu, Q.; Huang, X.; Gao, R.; Zhao, R. China’s Construction Industry-Linked Economy-Resources- Environment Fl Ow in International Trade. J. Clean. Prod. 2021, 278, 123990. [Google Scholar] [CrossRef]
Category | Year | Changes in the Proportion of Emission Reductions |
---|---|---|
NOx | 2011–2017 | Power sector (−55.89%) > Residential sector (−19.94%) > Industrial sector (−9.20%) > Transportation sector (−2.85%) |
SO2 | 2011–2017 | Power sector (−76.89%) > Industrial sector (−65.55%) > Residential sector (−33.73%) > Transportation sector (32.12%) |
Dust | 2011–2017 | Industrial sector (−46.42%) > Power sector (−31.85%) > Residential sector (−29.78%) > Transportation sector (4.06%) |
Variable | Name | Unit | VIF | 1/VIF |
---|---|---|---|---|
ln(GC) | Electricity generation | Billion kWh | 4.32 | 0.23 |
ln(DI) | Disposable income | CNY | 2.32 | 0.43 |
ln(UD) | Urban population density | People/km2 | 1.15 | 0.87 |
ln(UGSA) | Urban green space area | Hectare | 4.08 | 0.25 |
ln(GCI) | Total construction industry output | CNY 10,000 | 6.50 | 0.15 |
ln(PVO) | Private car ownership | 10,000 vehicles | 7.13 | 0.14 |
ln(SIS) | Value added of secondary industry as a proportion of regional GDP | % | 2.46 | 0.41 |
ln(SP) | Steel production | 10,000 tons | 5.16 | 0.19 |
Mean VIF | 4.14 |
Models | Classification | Bandwidth | Akazuchi Informative Guidelines | Residual Squared | Goodness of Fit | Calibration R2 |
---|---|---|---|---|---|---|
GTWR | ln(NOx) | 0.112 | −119.626 | 0.963 | 0.993 | 0.993 |
ln(SO2) | 0.115 | 318.820 | 8.722 | 0.972 | 0.971 | |
ln(Dust) | 0.115 | 142.603 | 3.828 | 0.983 | 0.982 | |
OLS | ln(NOx) | — | 71.143 | — | 0.887 | 0.882 |
ln(SO2) | — | 321.808 | — | 0.837 | 0.831 | |
ln(Dust) | — | 277.443 | — | 0.810 | 0.802 |
Classification | Year | Coefficient |
---|---|---|
ln(NOx) | 2011–2017 | ln(DI)(−1.13) > ln(UGSA)(0.38) > ln(GC)(0.28) > ln(UD)(0.13) > ln(SP)(0.11) > ln(PVO)(0.07) > ln(GCI)(−0.03) > ln(SIS)(0.03) |
ln(SO2) | 2011–2017 | ln(DI)(−2.13) > ln(GC)(0.60) > ln(PVO)(−0.34) > ln(UGSA)(0.32) > ln(SIS)(0.18) > ln(GCI)(0.15)>ln(SP)(0.14)>ln(UD)(0.03) |
ln(Dust) | 2011–2017 | ln(DI)(−1.51) > ln(GC)(0.39) > ln(SIS)(0.27) > ln(SP)(0.27) > ln(GCI)(−0.23) > ln(UGSA)(0.20) > ln(PVO)(0.09) > ln(UD)(0.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; He, C.; Yang, L.; Yi, J.; Ke, B.; Mu, H.; Tu, P.; Ye, Z.; Hong, S. Spatiotemporal Dynamic Correlation Characteristics and Driving Factors of Major Air Pollutant Emissions in China. Atmosphere 2023, 14, 130. https://doi.org/10.3390/atmos14010130
Tian Y, He C, Yang L, Yi J, Ke B, Mu H, Tu P, Ye Z, Hong S. Spatiotemporal Dynamic Correlation Characteristics and Driving Factors of Major Air Pollutant Emissions in China. Atmosphere. 2023; 14(1):130. https://doi.org/10.3390/atmos14010130
Chicago/Turabian StyleTian, Ya, Chao He, Lu Yang, Jiahui Yi, Biqin Ke, Hang Mu, Peiyue Tu, Zhixiang Ye, and Song Hong. 2023. "Spatiotemporal Dynamic Correlation Characteristics and Driving Factors of Major Air Pollutant Emissions in China" Atmosphere 14, no. 1: 130. https://doi.org/10.3390/atmos14010130
APA StyleTian, Y., He, C., Yang, L., Yi, J., Ke, B., Mu, H., Tu, P., Ye, Z., & Hong, S. (2023). Spatiotemporal Dynamic Correlation Characteristics and Driving Factors of Major Air Pollutant Emissions in China. Atmosphere, 14(1), 130. https://doi.org/10.3390/atmos14010130