Variation Characteristics and Source Analysis of Cloud Condensation Nuclei at the Ridge of Liupan Mountain Located in Western China
Abstract
:1. Introduction
2. Data Description
2.1. Site Location
2.2. Data
2.2.1. Cloud Condensation Nuclei and Meteorological Data
2.2.2. NCEP/NCAR Reanalysis Global Reanalysis Meteorological Data
2.3. Method
3. Discussion and Conclusion
3.1. The Temporal Variations in CCN Concentration
3.1.1. The Monthly Variations in CCN Concentration
3.1.2. Diurnal Variation in CCN Concentration
3.1.3. Seasonal Diurnal Variation in CCN Concentrations in Different Seasons
3.2. The CCN Transport Characteristics
3.2.1. Relationship between the CCN Concentration and Wind Direction
3.2.2. Relationship between the CCN Concentration and Temperature, Humidity and Pressure
3.3. Backward Trajectory Analysis of the CCN Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sax, R.I.; Hudson, J.G. Continentality of the South Florida Summertime CCN Aerosol. J. Atmos. Sci. 2010, 38, 1467–1479. [Google Scholar] [CrossRef]
- Hui, W.; Xiaoli, L.; Linjun, A.; Wei, D. Observational study of cloud condensation nuclei under different weather and visibility in Nanjing. Meteorol. Sci. 2016, 36, 800–809. (In Chinese) [Google Scholar]
- Dahe, Q. Research on China’s Meteorological Development Strategy; Meteorological Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Yanyu, Y.; Shengjie, N.; Jianren, S.; Jingjing, L. Observational study on the distribution of cloud condensation nuclei and its causes in drought region. China Environ. Sci. 2010, 30, 593–598. (In Chinese) [Google Scholar]
- Roberts, G.; Nenes, A. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol. 2005, 39, 206–221. [Google Scholar] [CrossRef]
- Rose, D.; Gunthe, S.S.; Mikhailov, E.; Frank, G.P.; Dusek, U.; Andreae, M.O.; Pöschl, U. Calibration and measurement uncertainties of a continuous flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 2008, 8, 1153–1179. [Google Scholar] [CrossRef]
- Ervens, B.; Cubison, M.J.; Andrews, E.; Feingold, G.; Ogren, J.A.; Jimenez, J.L.; Quinn, P.K.; Bates, T.S.; Wang, J.; Zhang, Q.; et al. CCN predictions using simplified assumptions of organic aerosol composition and mixing state:a synthesis from six different locations. Atmos. Chem. Phys. 2010, 10, 4795–4807. [Google Scholar] [CrossRef]
- Kerminen, V.M.; Paramonov, M.; Anttila, T.; Riipinen, I.; Fountoukis, C.; Korhonen, H.; Asmi, E.; Laakso, L.; Lihavainen, H.; Swietlicki, E.; et al. Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmos. Chem. Phys. 2012, 12, 12037–12059. [Google Scholar] [CrossRef]
- Whitehead, J.D.; Irwin, M.; Allan, J.D.; Good, N.; Mcfiggans, G. A meta analysis of particle water uptake reconciliation studies. Atmos. Chem. Phys. 2014, 14, 11833–11841. [Google Scholar] [CrossRef]
- Reade, L.; Jennings, S.G.; Mcsweeney, G. Cloud condensation nuclei measurements at Mace Head, Ireland, over the period 1994–2002. Atmos. Res. 2006, 82, 610–621. [Google Scholar] [CrossRef]
- Kuwata, M.; Kondo, Y.; Miyazaki, Y.; Komazaki, Y.; Kim, J.H.; Yum, S.S.; Tanimoto, H.; Matsueda, H. Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005. Atmos. Chem. Phys. 2007, 8, 2933–2948. [Google Scholar] [CrossRef]
- Baumgardner, D.; Raga, G.B.; Muhlia, A. Evidence for the formation of CCN by photochemical processes in Mexico City. Atmos. Environ. 2004, 38, 357–367. [Google Scholar] [CrossRef]
- Irwin, M.; Robinson, N.; Allan, J.D.; Coe, H.; McFiggans, G. Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3. Atmos. Chem. Phys. 2011, 11, 11157–11174. [Google Scholar] [CrossRef] [Green Version]
- Asa-Awuku, A.; Moore, R.H.; Nenes, A.; Bahreini, R.; Holloway, J.S.; Brock, C.A.; Middlebrook, A.M.; Ryerson, T.B.; Jimenez, J.L.; DeCarlo, P.F.; et al. Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. J. Geophys. Res. Atmos. 2011, 116, D11. [Google Scholar] [CrossRef]
- Lixin, S.; Ying, D. Observations of cloud condensation nuclei in North China. Acta Meteorol. Sin. 2007, 65, 644–652. (In Chinese) [Google Scholar]
- Wiedensohler, A.; Cheng, Y.F.; Nowak, A.; Wehner, B.; Achtert, P.; Berghof, M.; Birmili, W.; Wu, Z.J.; Hu, M.; Zhu, T.; et al. Rapid aerosol particle growth and increase in cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China. J. Geophys. Res. Atmos. 2009, 114, D00G08. [Google Scholar] [CrossRef]
- Deng, Z.Z.; Zhao, C.S.; Ma, N.; Liu, P.F.; Ran, L.; Xu, W.Y.; Chen, J.; Liang, Z.; Liang, S.; Huang, M.Y.; et al. Size-resolved and bulk activation properties of aerosols in the North China Plain. Atmos. Chem. Phys. 2011, 11, 3835–3846. [Google Scholar] [CrossRef]
- Tingting, W. The Characteristic of Cloud Condensation Nuclei in North China Plain. Master’s Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, 2011. (In Chinese). [Google Scholar]
- Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.O.M.; Pschl, U. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou. China-Part l: Sizeresolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos. Chem. Phys. 2010, 10, 3365–3383. [Google Scholar] [CrossRef]
- Leng, C.; Cheng, T.; Chen, J.; Zhang, R.; Tao, J.; Huang, G.; Zha, S.; Zhang, M.; Fang, W.; Li, X.; et al. Measurements of surface cloud condensation nuclei and aerosol activity in downtown Shanghai. Atmos. Environ. 2013, 69, 354–361. [Google Scholar] [CrossRef]
- Meng, J.W.; Yeung, M.C.; Li, Y.J.; Lee, B.Y.L.; Chan, C.K. Size-resolved cloud condensation nuclei(CCN)activity and closure analysis at the HKUST supersite in Hong Kong. Atmos. Chem. Phys. 2014, 14, 10267–10282. [Google Scholar] [CrossRef]
- Gunthe, S.S.; Rose, D.; Su, H.; Garland, R.M.; Achtert, P.; Nowak, A.; Wiedensohler, A.; Kuwata, M.; Takegawa, N.; Kondo, Y.; et al. Cloud condensation nuclei(CCN)from fresh and aged air pollution in the megacity region of Beijing. Atmos. Chem. Phys. 2011, 11, 11023–11039. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Su, H.; Rose, D.; Gunthe, S.S.; Berghof, M.; Wehner, B.; Achtert, P.; Nowak, A.; Takegawa, N.; Kondo, Y.; et al. Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization. Atmos. Chem. Phys. 2012, 12, 4477–4491. [Google Scholar] [CrossRef]
- Shuxian, F.; Xialan, A. Measurement and analysis of the concentration of cloud condensation nuclei in MT Helanshan area. J. Desert Res. 2000, 20, 107–109. (In Chinese) [Google Scholar]
- Zhao, Y.; Niu, S.; Lv, J.; Xu, J.; Sang, J. Observational analyses on cloud condensation nuclei in northwestem China in summer of 2007. Plateau Meteorol. 2010, 29, 1043–1049. (In Chinese) [Google Scholar]
- Feng, Q.J.; Li, P.R.; Fan, M.Y.; Hou, T.J. Observational analysis of cloud condensation nuclei in some regions of North China. Trans. Atmos. Sci. 2012, 35, 533–540. (In Chinese) [Google Scholar]
- Li, L.; Yin, Y.; Gu, X.S.; Chen, K.; Tan, W.; Yang, L.; Yuan, L. Observational study of cloud condensation nuclei propeaies at various altitudes of Huangshan Mountains. Chin. J. Atmos. Sci. 2014, 38, 410–420. (In Chinese) [Google Scholar]
- Li, Q.; Yin, Y.; Gu, X.; Yuan, L.; Kong, S.; Jiang, Q.; Chen, K.; Li, L. An observational study of aerosol hygroscopic growth factor and cloud condensation nuclei in Nanjing in summer. China Environ. Sci. 2015, 35, 337–346. (In Chinese) [Google Scholar]
- Jiangchuanl, T.; Chunshen, Z.; Nan, M.A.; Mengyu, H. Laboratory Study of Factors Impacting Measurements of the Cloud Condensation Nuclei Number Concentration. J. Peking Univ. (Nat. Sci. Ed.) 2018, 54, 699–704. (In Chinese) [Google Scholar]
- Zhang, P.; Yao, Z.; Jia, S.; Chang, Z.; Sang, J.; Gao, L.; Zhao, W.; Wang, W.; Zhu, X. Study on the Characteristics of Atmospheric Water Resources and Hydrometeor Precipitation Efficiency over the LPS Area. Atmos. Sci. 2020, 44, 421–434. (In Chinese) [Google Scholar]
- Bao-jian, W.; Yu-xia, H.; Jin-hai, H.; Li-juan, W. Relation between Vapour Transportation in the Period of East Asian Summer Monsoon and Drought in Northwest China. Plateau Meteorol. 2004, 23, 912–918. (In Chinese) [Google Scholar]
- Philippin, S.; Betterton, E.A. Cloud condensation nuclei concentrations in Southern Arizona: Instrumentation and early observations. Atmos. Res. 1997, 43, 263–275. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, C.H.; Chen, K.; An, J.; Wang, W.; Lin, Z.; Yan, J.; Wang, J. An observational study of the microphysical properties of atmospheric aerosol at Mt. Huang. Trans. Atmos. Sci. 2010, 33, 129–136. (In Chinese) [Google Scholar]
Season | SS0.2% | SS0.4% | SS0.6% | SS0.8% | SS1.0% | SS1.2% | The Average Value |
---|---|---|---|---|---|---|---|
Spring | 704.80 | 741.85 | 960.36 | 1108.14 | 1228.96 | 1312.91 | 1009.50 |
Summer | 355.68 | 476.33 | 580.43 | 643.92 | 1005.18 | 1047.77 | 684.89 |
Autumn | 525.03 | 606.50 | 731.06 | 808.06 | 1024.50 | 1076.58 | 795.29 |
Winter | 742.45 | 811.29 | 961.01 | 1053.66 | 1132.85 | 1189.51 | 981.80 |
SS | Season | Temperature Col | Relative Humidity Col | Pressure Col | Number of Samples (One Sample Per Minute) |
---|---|---|---|---|---|
SS0.2% | Spring | 0.75 | −0.72 | 0.08 | 15,898 |
Summer | 0.61 | −0.29 | 0.29 | 12,002 | |
Autumn | 0.48 | 0.29 | −0.26 | 39,451 | |
Winter | 0.49 | −0.38 | −0.04 | 23,008 | |
SS0.4% | Spring | 0.78 | −0.75 | 0.04 | 15,865 |
Summer | 0.66 | −0.35 | 0.28 | 10,677 | |
Autumn | 0.55 | 0.22 | −0.31 | 37,032 | |
Winter | 0.51 | −0.40 | −0.02 | 22,904 | |
SS0.6% | Spring | 0.74 | −0.71 | 0.08 | 15,807 |
Summer | 0.66 | −0.36 | 0.27 | 10,654 | |
Autumn | 0.55 | 0.23 | −0.30 | 36,944 | |
Winter | 0.50 | −0.40 | −0.01 | 22,857 | |
SS0.8% | Spring | 0.77 | −0.74 | 0.15 | 15,782 |
Summer | 0.58 | −0.27 | 0.22 | 10,627 | |
Autumn | 0.54 | 0.23 | −0.29 | 36,825 | |
Winter | 0.48 | −0.40 | −0.05 | 22,775 | |
SS1.0% | Spring | 0.77 | −0.74 | 0.13 | 15,750 |
Summer | 0.26 | −0.01 | 0.12 | 1611 | |
Autumn | 0.56 | 0.23 | −0.27 | 18,824 | |
Winter | 0.47 | −0.39 | −0.04 | 22,730 | |
SS1.2% | Spring | 0.75 | −0.72 | 0.13 | 15,716 |
Summer | 0.29 | 0.002 | 0.19 | 1611 | |
Autumn | 0.534 | 0.27 | −0.29 | 18,789 | |
Winter | 0.47 | −0.38 | −0.02 | 22,647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Shu, Z.; Wu, H.; Tao, T.; Cao, N.; Zhu, H.; Liu, C.; Mu, J.; Tian, L. Variation Characteristics and Source Analysis of Cloud Condensation Nuclei at the Ridge of Liupan Mountain Located in Western China. Atmosphere 2022, 13, 1483. https://doi.org/10.3390/atmos13091483
Lin T, Shu Z, Wu H, Tao T, Cao N, Zhu H, Liu C, Mu J, Tian L. Variation Characteristics and Source Analysis of Cloud Condensation Nuclei at the Ridge of Liupan Mountain Located in Western China. Atmosphere. 2022; 13(9):1483. https://doi.org/10.3390/atmos13091483
Chicago/Turabian StyleLin, Tong, Zhiliang Shu, Hao Wu, Tao Tao, Ning Cao, Haoran Zhu, Chenxi Liu, Jianhua Mu, and Lei Tian. 2022. "Variation Characteristics and Source Analysis of Cloud Condensation Nuclei at the Ridge of Liupan Mountain Located in Western China" Atmosphere 13, no. 9: 1483. https://doi.org/10.3390/atmos13091483
APA StyleLin, T., Shu, Z., Wu, H., Tao, T., Cao, N., Zhu, H., Liu, C., Mu, J., & Tian, L. (2022). Variation Characteristics and Source Analysis of Cloud Condensation Nuclei at the Ridge of Liupan Mountain Located in Western China. Atmosphere, 13(9), 1483. https://doi.org/10.3390/atmos13091483