Air Quality and Traffic Trends in Cincinnati, Ohio during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Quality Data and Site Information
2.2. Traffic Count Data and Site Information
2.3. Predicting 2020 Traffic Counts at Near Road Site
2.4. Air Quality Data Analysis
2.5. Meterological Analysis
3. Results
3.1. Traffic Counts at Northgate and Mt. Healthy
3.2. Predicting Near Road Traffic Counts
3.3. 2020 Traffic Trends
3.4. Intraannual and Interannual Variability of Air Pollutants (PM2.5, BC, CO, NOX, NO2, O3)
3.4.1. PM2.5
3.4.2. Black Carbon
3.4.3. CO
3.4.4. NOX/NO2
3.4.5. O3
3.5. Meteorological Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinkerton, K.E.; Green, F.H.; Saiki, C.; Vallyathan, V.; Plopper, C.G.; Gopal, V.; Hung, D.; Bahne, E.B.; Lin, S.S.; Ménache, M.G.; et al. Distribution of Particulate Matter and Tissue Remodeling in the Human Lung. Environ. Health Perspect. 2000, 108, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Ross Anderson, H.; Sunyer, J.; Ayres, J.O.N.; Baccini, M.; Vonk, J.M.; Boumghar, A.; Forastiere, F.; Forsberg, B.; Touloumi, G.; et al. Acute effects of particulate air pollution on respiratory admissions: Results from APHEA 2 project. Air Pollution and Health: A European Approach. Am. J. Respir. Crit. Care Med. 2001, 164, 1860–1866. Available online: https://www.ncbi.nlm.nih.gov/pubmed/11734437 (accessed on 2 February 2022). [CrossRef]
- Schwartz, J. Air pollution and hospital admissions for the elderly in Detroit, Michigan. Am. J. Respir. Crit. Care Med. 1994, 150, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. Air Pollution and Blood Markers of Cardiovascular Risk. Environ. Health Perspect. 2001, 109 (Suppl. 3), 405–409. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Schwartz, J.D. Long- and Short-Term Exposure to PM2.5 and Mortality: Using Novel Exposure Models. Epidemiology (Camb. Mass.) 2013, 24, 555–561. [Google Scholar] [CrossRef]
- Hu, Z. Spatial analysis of MODIS aerosol optical depth, PM2. 5, and chronic coronary heart disease. Int. J. Health Geogr. 2009, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Watterson, T.L.; Sorensen, J.; Martin, R.; Coulombe, R.A., Jr. Effects of PM2.5 Collected from Cache Valley Utah on Genes Associated with the Inflammatory Response in Human Lung Cells. J. Toxicol. Environ. Health Part A 2007, 70, 1731–1744. [Google Scholar] [CrossRef]
- Hu, S.; McDonald, R.; Martuzevicius, D.; Biswas, P.; Grinshpun, S.A.; Kelley, A.; Reponen, T.; Lockey, J.; LeMasters, G. UNMIX modeling of ambient PM2.5 near an interstate highway in cincinnati, OH, USA. Atmos. Environ. 2006, 40, 378–395. [Google Scholar] [CrossRef]
- Wojas, B.; Almquist, C. Mass concentrations and metals speciation of PM2.5, PM10, and total suspended solids in Oxford, Ohio and comparison with those from metropolitan sites in the Greater Cincinnati region. Atmos. Environ. 2007, 41, 9064–9078. [Google Scholar] [CrossRef]
- Lierl, M.B.; Hornung, R.W. Relationship of outdoor air quality to pediatric asthma exacerbations. Ann. Allergy Asthma Immunol. 2003, 90, 28–33. [Google Scholar] [CrossRef]
- Cheng, G.; Smith, A.M.; Levin, L.; Epstein, T.; Ryan, P.H.; LeMasters, G.K.; Khurana Hershey, G.K.; Reponen, T.; Villareal, M.; Lockey, J.; et al. Duration of day care attendance during infancy predicts asthma at the age of seven: The Cincinnati Childhood Allergy and Air Pollution Study. Clin. Exp. Allergy 2014, 44, 1274–1281. [Google Scholar] [CrossRef]
- DeFranco, E.; Hall, E.; Hossain, M.; Chen, A.; Haynes, E.N.; Jones, D.; Ren, S.; Lu, L.; Muglia, L. Air Pollution and Stillbirth Risk: Exposure to Airborne Particulate Matter during Pregnancy Is Associated with Fetal Death. PLoS ONE 2015, 10, e0120594. [Google Scholar] [CrossRef]
- Torres-Jardón, R.; Keener, T.C. Evaluation of Ozone-Nitrogen Oxides-Volatile Organic Compound Sensitivity of Cincinnati, Ohio. J. Air Waste Manag. Assoc. 2006, 56, 322–333. [Google Scholar] [CrossRef]
- Singh, A.; Rajput, P.; Sharma, D.; Sarin, M.M.; Singh, D. Black Carbon and Elemental Carbon from Postharvest Agricultural-Waste Burning Emissions in the Indo-Gangetic Plain. Adv. Meteorol. 2014, 2014, 179301. [Google Scholar] [CrossRef]
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- COVID-19 Pandemic in Ohio. 21 May. Available online: https://www.healthpolicyohio.org/coronavirus-covid-19-in-ohio/ (accessed on 9 July 2022).
- Zhou, X.; Josey, K.; Kamareddine, L.; Caine, M.C.; Liu, T.; Mickley, L.J.; Cooper, M.; Dominici, F. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci. Adv. 2021, 7, eabi8789. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef]
- Petroni, M.; Hill, D.; Younes, L.; Barkman, L.; Howard, S.; Howell, I.B.; Mirowsky, J.; Collins, M.B. Hazardous air pollutant exposure as a contributing factor to COVID-19 mortality in the United States. Environ. Res. Lett. 2020, 15, 940. [Google Scholar] [CrossRef]
- Pozzer, A.; Dominici, F.; Haines, A.; Witt, C.; Münzel, T.; Lelieveld, J. Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovasc. Res. 2020, 116, 2247–2253. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef] [PubMed]
- Steffeck, A.W.T. Insignificant Impacts of COVID-19 Stay-At-Home Orders on Chicago Air Quality. DePaul Discov. 2021, 10, 2. [Google Scholar]
- Lange, C.L.; Smith, V.A.; Kahler, D.M. Pittsburgh Air Pollution Changes During the COVID-19 Lockdown. Environ. Adv. 2022, 7, 100149. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.A.; Chien, L.C.; Li, Y.; Lin, G. Nonuniform impacts of COVID-19 lockdown on air quality over the United States. Sci. Total Environ. 2020, 745, 141105. [Google Scholar] [CrossRef]
- Google. Google Maps Cincinnati. 2022. Available online: https://goo.gl/maps/RdwtEDQXWu1bXAKf6 (accessed on 5 May 2022).
- Sørensen, J.H.; Rasmussen, A. Method for Calculation of Atmospheric Boundary-Layer Height used in ETEX Dispersion Modeling. In Proceedings of the Sixth Topical Meeting on Emergency Preparedness and Response, San Francisco, CA, USA, 22–25 April 1997. [Google Scholar]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. 2010, 115, D16113. [Google Scholar] [CrossRef]
- Miguel, A.H.; Kirchstetter, T.W.; Harley, R.A.; Hering, S.V. On-Road Emissions of Particulate Polycyclic Aromatic Hydrocarbons and Black Carbon from Gasoline and Diesel Vehicles. Environ. Sci. Technol. 1998, 32, 450–455. [Google Scholar] [CrossRef]
- Hamilton, S.D.; Harley, R.A. High-Resolution Modeling and Apportionment of Diesel-Related Contributions to Black Carbon Concentrations. Environ. Sci. Technol. 2021, 55, 12250–12260. [Google Scholar] [CrossRef]
- Elminir, H.K. Dependence of urban air pollutants on meteorology. Sci. Total Environ. 2005, 350, 225–237. [Google Scholar] [CrossRef]
- Beaver, S.; Palazoglu, A. Influence of synoptic and mesoscale meteorology on ozone pollution potential for San Joaquin Valley of California. Atmos. Environ. 2009, 43, 1779–1788. [Google Scholar] [CrossRef]
- Rachel Tumbleson, R.T.; (University of Cincinnati, Cincinnati, OH, USA); Christina Boss, C.B.; (Southwest Ohio Air Quality Agency, Cincinnati, OH, USA). Personal Communication, 2021.
- Evangeliou, N.; Platt, S.M.; Eckhardt, S.; Lund Myhre, C.; Laj, P.; Alados-Arboledas, L.; Backman, J.; Brem, B.T.; Fiebig, M.; Flentje, H.; et al. Changes in black carbon emissions over Europe due to COVID-19 lockdowns. Atmos. Chem. Phys. 2021, 21, 2675–2692. [Google Scholar] [CrossRef]
- Jia, M.; Evangeliou, N.; Eckhardt, S.; Huang, X.; Gao, J.; Ding, A.; Stohl, A. Black Carbon Emission Reduction Due to COVID-19 Lockdown in China. Geophys. Res. Lett. 2021, 48, e2021GL093243. [Google Scholar] [CrossRef]
- Lopez-Coto, I.; Ren, X.; Karion, A.; McKain, K.; Sweeney, C.; Dickerson, R.R.; McDonald, B.C.; Ahn, D.Y.; Salawitch, R.J.; He, H.; et al. Carbon Monoxide Emissions from the Washington, DC, and Baltimore Metropolitan Area: Recent Trend and COVID-19 Anomaly. Environ. Sci. Technol. 2022, 56, 2172–2180. [Google Scholar] [CrossRef]
- Basic Information about NO2. Available online: https://www.epa.gov/no2-pollution/basic-information-about-no2 (accessed on 20 July 2022).
- Campbell, P.C.; Tong, D.; Tang, Y.; Baker, B.; Lee, P.; Saylor, R.; Stein, A.; Ma, S.; Lamsal, L.; Qu, Z. Impacts of the COVID-19 economic slowdown on ozone pollution in the U.S. Atmos. Environ. 2021, 264, 118713. [Google Scholar] [CrossRef]
- The Average Salary of Essential Workers in 2020. May. Available online: https://www.business.org/finance/accounting/average-salary-of-essential-workers/ (accessed on 4 December 2021).
- Wang, J.M.; Jeong, C.H.; Zimmerman, N.; Healy, R.M.; Wang, D.K.; Ke, F.; Evans, G.J. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters. Atmos. Meas. Tech. 2015, 8, 3263–3275. [Google Scholar] [CrossRef] [Green Version]
Site | PM2.5 | BC | CO | NOX | NO2 | O3 |
---|---|---|---|---|---|---|
Near Road | 2017–2020 | 2016–2020 | 2016–2020 | 2016–2020 | - | - |
Taft | 2016–2020 | 2019–2020 | 2016–2020 | - | 2016–2020 | 2016–2020 |
Time | 1 January–22 March | 23 March–10 April | 1 April–5 April | 23 March–1 May | 23 March–20 May | 23 March–30 June | 1 July–11 December | Year Average |
---|---|---|---|---|---|---|---|---|
8 p.m. | 1585.61 | 2478.87 | 520.096 | 2313.22 | 2168.094 | 1807.27 | 787.96 | 1665.87 |
8 a.m. | 1447.716 | 1432.33 | 551.59 | 1260.75 | 1261.62 | 892.177 | 673.33 | 1074.21 |
Taft PM2.5 (µg·m−3) | 8.16 (4.585) | 10.079 (6.05) | 12.76 (8.011) | 8.931 (5.548) | 8.489 (5.312) | 9.426 (5.575) | 8.931 (5.44) | 9.322 (6.531) |
Near Road PM2.5 (µg·m−3) | 10.29 (7.597) | 11.82 (9.82) | 14.82 (12.47) | 10.19 (8.699) | 9.90 (8.471) | 10.40 (8.023) | 10.17 (8.306) | 11.62 (8.662) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumbleson, R.H.; Balachandran, S. Air Quality and Traffic Trends in Cincinnati, Ohio during the COVID-19 Pandemic. Atmosphere 2022, 13, 1459. https://doi.org/10.3390/atmos13091459
Tumbleson RH, Balachandran S. Air Quality and Traffic Trends in Cincinnati, Ohio during the COVID-19 Pandemic. Atmosphere. 2022; 13(9):1459. https://doi.org/10.3390/atmos13091459
Chicago/Turabian StyleTumbleson, Rachel Helen, and Simone Balachandran. 2022. "Air Quality and Traffic Trends in Cincinnati, Ohio during the COVID-19 Pandemic" Atmosphere 13, no. 9: 1459. https://doi.org/10.3390/atmos13091459
APA StyleTumbleson, R. H., & Balachandran, S. (2022). Air Quality and Traffic Trends in Cincinnati, Ohio during the COVID-19 Pandemic. Atmosphere, 13(9), 1459. https://doi.org/10.3390/atmos13091459