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Abstract: During 2020, the stay-at-home order mandated in response to the COVID-19 pandemic led
to significant changes in traffic volumes in Cincinnati, OH. Air pollutant concentrations (PM2.5, black
carbon (BC), carbon monoxide (CO), nitrogen dioxide (NO2), nitrogen dioxide (NOX), and ozone
(O3)) monitored at two ground monitoring sites in the city of Cincinnati were analyzed intra-annually
in 2020 to quantify if the stay-at-home order impacted air quality. Interannual analyses were also
conducted to evaluate differences in 2020 data versus historical years (2016–2019). Traffic volume
data were also analyzed, where it was observed that, compared to pre-pandemic 2020, total traffic
counts decreased by up to 26.41% during Ohio’s stay-at-home order, while heavy-duty vehicle traffic
increased by up to 26.95% during the latter half of 2020. Statistical analysis indicated nonuniform
changes in air pollutant concentrations at both sites throughout 2020. During the lockdown period
at the central monitoring site, PM2.5 increased by 9%, while NO2 decreased by 30% compared to
pre-pandemic concentrations in 2020. For BC and CO, there were no significant changes.

Keywords: air quality; COVID-19; PM2.5; black carbon; carbon monoxide; ozone; nitrogen dioxide;
nitrogen oxides; traffic; Cincinnati

1. Introduction

On-road mobile vehicles are major sources of fine particulate matter with an aero-
dynamic diameter less than 2.5 microns (PM2.5). Compared to compounds of larger size,
PM2.5 has been associated with numerous health effects. The large surface area exhibited
by fine PM2.5 allows for increased adsorption of toxic compounds [1]. Additionally, it is
especially damaging to health because it can create health complications from both short-
and long-term exposures [2–5]. Epidemiological studies have also shown that exposure to
PM2.5 has been associated with cardiopulmonary morbidity and mortality [6], as well as
harmful birth effects [7].

The health effects of air pollution have been studied in Cincinnati for numerous
years. This has included PM2.5 modeling [8], speciation analysis [9], and its association
with pediatric asthma [10,11] and stillbirths [12]. Additionally, the region’s NOX–VOC and
ozone relationships have been of interest [13] especially because, in recent years (2018–2021),
Hamilton County (the county in which the city of Cincinnati resides) has been considered
in marginal nonattainment for 8 h ozone concentrations based on the 2015 standard of
0.070 ppm. The EPA announced on 9 June 2022 that Hamilton County reached attainment
standards for O3. Nevertheless, there is considerable ongoing work in Cincy with regard to
the impact of air pollution on health.

Mobile sources are a major contributor to all six criteria pollutants for which the
US EPA has established National Ambient Air Quality Standards (NAAQS), which set
allowable limits on atmospheric concentrations of carbon monoxide (CO), lead, nitrogen
dioxide (NO2), ozone (O3), PM2.5, PM10 (particulate matter with an aerodynamic diameter
less than 10 µm), and sulfur dioxide (SO2). These air pollutants are emitted directly into the
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air and are also formed through chemical reactions in the atmosphere. Ground-level O3,
for example, (the main component of smog), is formed through photochemical reactions
between oxides of nitrogen (NOX) and volatile organic compounds (VOCs). In addition to
the six criteria air pollutants, mobile sources emit a significant amount of black carbon (BC)
and elemental carbon (EC), both of which are components of PM2.5. BC and EC differ as a
function of their measurement technique. BC refers to the light-absorbing component of
carbonaceous aerosols and is determined using optical techniques. In contrast, the EC is a
refractory component of PM2.5 and is measured using a thermo-optical technique under
oxidizing conditions [14]. BC and EC are short-lived pollutants that are emitted when
fossil and biomass fuels are combusted, and they are important to air quality due to their
association with harmful health effects and contribution to climate change through having
a positive radiative forcing.

Given the importance of mobile sources to air quality, there has been much interest
in the research community to quantify the effects of the policies implemented in response
to the SARS-CoV-2 pandemic. Cincinnati is the third largest city in the state of Ohio and
a major transportation hub in the Midwest. It is situated in the Ohio River Valley with
a metropolitan population of approximately 2,256,000. Two major interstates, I-75 and
I-71, pass through it. I-75 is one of the largest north–south interstate roadways in the US,
connecting southern Florida to the upper peninsula of Michigan. I-71 is a smaller-scale
interstate highway, connecting Cleveland, Ohio with Louisville, Kentucky. The Ohio–
Indiana–Kentucky tri-state area also features an auxiliary interstate highway, I-275.

In December 2019, the first cases of the novel coronavirus SARS-CoV-2 were discovered.
The United States (US) has seen about 57.9 million cases and approximately 1.02 million
deaths attributed to COVID-19 as of July 2022. Illness severity can be intensified when
infected individuals have chronic lung diseases such as asthma or chronic obstructive
pulmonary disease (COPD), as well as heart conditions, which are associated with exposure
to poor air quality [15,16]. Risk of death from COVID-19 is also higher in individuals aged
>70, males, some ethnic groups, and economically disadvantaged populations.

The first three cases of COVID-19 contracted by Ohioans were reported on 9 March
with the first death reported 20 March [17]. Shortly after, the World Health Organization
declared the virus a pandemic on 11 March 2020. During this time, the State of Ohio
began to issue closings of numerous public places. Mass gatherings were prohibited on
12 March, K-12 schools were ordered to close 14 March, sit-down dining was banned on
15 March, salons were shut down on 19 March, and entertainment venues were closed on
21 March [17]. Following these events, Governor Mike DeWine issued a stay-at-home order
for the entire state of Ohio that remained effective from 23 March to 1 May. All citizens
were to remain at home unless required to take part in essential work or activity. Retail
stores were allowed to open on 12 May. Salons, barber shops, and spas could open on
15 May. Lastly, bars and restaurants were opened on 20 May.

Since the onset of the COVID-19 pandemic, several studies have investigated the asso-
ciation between air quality and COVID-19 mortality. In 92 Western counties in the United
States, there were approximately 20,000 extra COVID-19 infections and 750 deaths associ-
ated with exposure to elevated levels of PM2.5 during wildfires in 2020 [18]. Furthermore,
exposure to poor air quality over time (2000–2016) was associated with an 8% increase in
COVID-19 elated mortality for every 1 ug/m3 increase in PM2.5 in the United States [19].
Similarly, an increase in exposure to hazardous air pollutants (HAPs) was linked with a 9%
increase in death among patients with COVID-19 [20]. Moreover, a study that calculated
the COVID-19 mortality fraction attributed to air pollution found that PM2.5 pollution
contributed to 7–33% of COVID-19 deaths worldwide and 6–39% in North America [21].

As stay-at-home orders were mandated around the world in an attempt to prevent
the spread of the virus, a number of studies analyzed the impact to air quality due to
decreased traffic. A study spanning the entire US found an approximate 25.5% reduction in
NO2 compared to historical (2017–2019) levels, as well as a reduction in PM2.5 (4.45%) [22].
Chicago, the third largest metro area in the US, saw no change in air quality during the
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pandemic which suggested that the diesel-fueled long-haul rail operations that persisted
throughout the pandemic may have been the reason for lack of such a change [23]. In
Pittsburgh, it was found that NO2 and PM10 concentrations decreased at many of the
analyzed sites; however, decreases in PM2.5 pollution varied by site [24]. A nationwide
study looking into the effects of stay-at-home orders on air quality chose Cincinnati’s Taft
site as one of the 28 N-Core sites analyzed. It was found that this site saw a statistically
significant increase (18%) in PM10 when comparing 25 January through 7 March 2020,
versus 15 March through 25 April 2020, and a statistically insignificant increase of 19% in
PM2.5 was found over this time period [25].

This study aims to analyze the effects of the COVID-19 pandemic on Cincinnati’s air
quality, specifically for PM2.5, BC, CO, NOX, NO2, and O3. Air pollutant data were gathered
from the central monitoring site (Taft), as well as a site near a major interstate (Near Road).
Traffic data were also analyzed during 2020 to identify time periods where traffic volumes
were most impacted by COVID-19 policies. Lastly, the impact of meteorology was evaluated
by quantifying the atmospheric boundary layer height (ABL), as well as analyzing trends
in ambient temperate, pressure, relative humidity, and scalar wind speed.

2. Materials and Methods
2.1. Air Quality Data and Site Information

Ground-level air pollution data from 1 January 2016 through 11 December 2020 was
analyzed from two monitoring locations in Cincinnati: the Near Road site and the Taft
site, a US EPA N-Core site (Table 1). The Near Road site is located adjacent to the I-75,
approximately 3 miles from downtown, and the Taft site is located about half a mile from
the I-71 and approximately 2.5 miles from downtown (Figure 1). Air pollutant data were
provided by the region’s Southwest Ohio Air Quality Agency (SWOAQA). One hour
average air quality data analyzed from the Taft site included BC, PM2.5, CO, NOX, and O3.
One hour average air quality data from the Near Road site included BC, PM2.5, NOX, and
CO. All air pollutant data were preprocessed to remove data with negative and zero values.

Table 1. Years each pollutant was analyzed. Not all pollutants were analyzed from 2016 through 2020
at both sites due to a lack of data availability.

Site PM2.5 BC CO NOX NO2 O3

Near Road 2017–2020 2016–2020 2016–2020 2016–2020 - -
Taft 2016–2020 2019–2020 2016–2020 - 2016–2020 2016–2020

2.2. Traffic Count Data and Site Information

The Ohio Department of Transportation (ODOT) has numerous traffic count monitors
along major roadways in the greater Cincinnati region. Each traffic monitoring site records
traffic counts according to a size classification. Classifications in this work included vehicles
0–7 ft (Federal Class 1), vehicles 7–29 ft (Federal Classes 2–3), and vehicles greater than 29 ft
(Federal Classes 4–13). Federal Class 1 consists of motorcycles, Federal Classes 2–3 comprise
cars and pickup trucks, and Federal Classes 4–13 include single unit and combination unit
trucks. Total traffic counts of vehicles of all sizes were also included.

Three traffic sites of interest were included in this study, referred to as the Northgate
site, Mt. Healthy site, and Near Road site (Figure 1). The Northgate and Mt. Healthy sites
use a Wavetronix radar to document the total length of each vehicle. ODOT calibrates these
monitors manually by reviewing 4–8 h of video, ensuring to include peak traffic times, and
hand counts are compared to values collected by the Wavetronix head. The Near Road
traffic monitoring site is a weigh-in-motion site, where inductive loops and piezoelectric
sensors work together to determine the exact length of the axel of the vehicle and then
assign it to a specific federal classification bin on the basis of a classification tree.
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Figure 1. Map of air quality (green) and traffic (blue) monitoring sites used in this study (Google
Maps, [26]).

2.3. Predicting 2020 Traffic Counts at Near Road Site

In order to investigate the connection between traffic and air quality during Ohio’s
stay-at-home order, traffic volumes in 2020 at the Near Road site were modeled using linear
regression since the traffic count monitor at the Near Road site was only operational from
May 2017 to February 2019. The Northgate and Mt. Healthy sites were operational during
this same time period and continued to measure traffic volumes.

Therefore, traffic volume data for each vehicle classification type at the Near Road site
were regressed on traffic data from the Northgate and Mt. Healthy sites, which were treated
as the independent variables. Linear regression was conducted for each classification type,
as well as total traffic, for data from May 2017 to February 2019.

2.4. Air Quality Data Analysis

Predicted traffic volumes were used to bin air quality data in 2020 into several time
periods: 1 January–22 March (the start of the year up to the day before the stay-at-home
order was enacted), 23 March–10 April (first half of the stay-at-home order), 23 March–1 May
(entirety of stay-at-home-order), 23 March–20 May (entirety of stay-at-home order through
the full opening of Ohio’s public venues), 23 March–30 June (entirety of stay-at-home order
through the full opening of Ohio’s public venues and just before traffic seemed to return
to normal), and 1 July–11 December (post stay-at-home order and once traffic seemed
to return to normal). To determine whether Ohio’s stay-at-home order influenced any
statistically significant differences in Cincinnati’s air quality, analysis of variance (ANOVA)
was utilized to test for differences in mean pollutant concentration across these six time
periods of interest. ANOVA tests were conducted on an interannual basis to compare 2020
air pollutant concentrations to historical data (2016–2019), as well as on an intra-annual
basis for 2020 to compare pre-pandemic versus the time periods determined from the
predicted traffic volumes. Statistical analyses included the Tukey test to examine the degree
of difference in mean pollutant concentration between each pairwise comparison and the
Student’s t-test to compare differences in means.
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2.5. Meterological Analysis

Daily meteorological data (ambient temperature, ambient pressure, ambient relative
humidity, and scalar wind speed) at the Near Road site were obtained from the US EPA
for every day 2016 through 2020. Metrological data were grouped into the same six time
periods as the air pollutant data and were qualitatively analyzed to determine if any major
meteorological phenomena were present thought could significantly impact air pollution.

Additionally, the height of the atmospheric boundary layer (ABL) was estimated using
the Bulk Richardson Number, as seen in Equation (1) [27]. The calculation of the ABL height
was conducted to identify possible temperature inversions which can limit the amount of
atmospheric mixing and lead to the accumulation of pollutants in an affected region.

RiB = (gz (θv − θs))/(θs (u2 + v2)), (1)

where θs is the virtual potential temperature at the surface, and θv is the virtual potential
temperature at height z. u and v are the horizontal wind components at height z; g is the
gravitational acceleration. Two atmospheric sounding data runs from Wilmington, Ohio
(one at 8 p.m. and the other at 8 a.m.) published by the University of Wyoming were
used to calculate two ABL heights for each day over the year 2020. The top of the ABL
was determined as the height at which the Bulk Richardson Number reaches a critical
value (0.2) [27]. This technique has been shown to be one of the best methods for the
climatological analysis of the ABL because of its applicability for both stable and convective
boundary layers [28].

3. Results
3.1. Traffic Counts at Northgate and Mt. Healthy

At both the Mt. Healthy and the Northgate sites, traffic volumes significantly de-
creased for all vehicle classifications during Ohio’s stay-at-home order (Figures 2 and 3).
The minimum traffic volumes over this time period occurred near 12 March. Around the
beginning of July, traffic counts of all classifications returned to near pre-pandemic 2020
volumes, with total traffic and 7–29 ft traffic sustaining these volumes throughout the rest
of the year. Vehicles of 29 ft or greater, however, increased in volume during the latter
half of the year. The two trends seen in traffic count volumes in the >29 ft traffic plots
(Figures 2 and 3) are indicative of traffic count variation occurring between weekdays
and weekends (Figures S2–S4). Traffic volumes of vehicles 0–7 ft in length remained rel-
atively consistent during 2020 while also accounting for less than 1% of total traffic (see
Supplementary Materials).

3.2. Predicting Near Road Traffic Counts

The linear models had R2 values for total traffic counts, 7–29 ft traffic counts, and
>29 ft traffic counts of 0.76, 0.69, and 0.72 respectively (Figures 4–6). However, for the three
vehicle classification types (total traffic, 0–7 ft, and 7–29 ft), traffic volumes from one of
either the Mt. Healthy site or the Northgate site were not statistically significant predictors.
In these cases, data from the site which was not statistically significant was removed from
the regression analysis. Intercept terms which were not statistically significant were also
removed in the updated regression analysis.



Atmosphere 2022, 13, 1459 6 of 23
Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 23 
 

 

 

Figure 2. Reported daily average traffic counts at the Northgate site during 2020 for total traffic (top 
left), 7–29 ft (top right), and >29 ft (bottom center). 

 

Figure 3. Reported daily average traffic counts at the Mt. Healthy site during 2020 for total traffic 
(top left), 7–29 ft (top right), and >29 ft (bottom center). 

3.2. Predicting near Road Traffic Counts 
The linear models had R2 values for total traffic counts, 7–29 ft traffic counts, and >29 

ft traffic counts of 0.76, 0.69, and 0.72 respectively (Figures 4–6). However, for the three 
vehicle classification types (total traffic, 0–7 ft, and 7–29 ft), traffic volumes from one of 
either the Mt. Healthy site or the Northgate site were not statistically significant predic-
tors. In these cases, data from the site which was not statistically significant was removed 
from the regression analysis. Intercept terms which were not statistically significant were 
also removed in the updated regression analysis. 

Figure 2. Reported daily average traffic counts at the Northgate site during 2020 for total traffic (top
left), 7–29 ft (top right), and >29 ft (bottom center).

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 23 
 

 

 

Figure 2. Reported daily average traffic counts at the Northgate site during 2020 for total traffic (top 
left), 7–29 ft (top right), and >29 ft (bottom center). 

 

Figure 3. Reported daily average traffic counts at the Mt. Healthy site during 2020 for total traffic 
(top left), 7–29 ft (top right), and >29 ft (bottom center). 

3.2. Predicting near Road Traffic Counts 
The linear models had R2 values for total traffic counts, 7–29 ft traffic counts, and >29 

ft traffic counts of 0.76, 0.69, and 0.72 respectively (Figures 4–6). However, for the three 
vehicle classification types (total traffic, 0–7 ft, and 7–29 ft), traffic volumes from one of 
either the Mt. Healthy site or the Northgate site were not statistically significant predic-
tors. In these cases, data from the site which was not statistically significant was removed 
from the regression analysis. Intercept terms which were not statistically significant were 
also removed in the updated regression analysis. 

Figure 3. Reported daily average traffic counts at the Mt. Healthy site during 2020 for total traffic
(top left), 7–29 ft (top right), and >29 ft (bottom center).



Atmosphere 2022, 13, 1459 7 of 23

Atmosphere 2022, 13, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 4. Results of using Mt. Healthy total traffic counts to predict Near Road total traffic counts 
via linear regression. The regression equation, p-value for fit of predictor, and R2 are shown in the 
top left of the figure. 

 

Figure 4. Results of using Mt. Healthy total traffic counts to predict Near Road total traffic counts via
linear regression. The regression equation, p-value for fit of predictor, and R2 are shown in the top
left of the figure.

Atmosphere 2022, 13, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 4. Results of using Mt. Healthy total traffic counts to predict Near Road total traffic counts 
via linear regression. The regression equation, p-value for fit of predictor, and R2 are shown in the 
top left of the figure. 

 
Figure 5. Results of using Northgate 7–29 ft traffic counts to predict Near Road 7–29 ft traffic counts
via linear regression. The regression equation, p-value for fit of predictor, and R2 are shown in the top
left of the figure.



Atmosphere 2022, 13, 1459 8 of 23

Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 23 
 

 

Figure 5. Results of using Northgate 7–29 ft traffic counts to predict Near Road 7–29 ft traffic counts 
via linear regression. The regression equation, p-value for fit of predictor, and R2 are shown in the 
top left of the figure. 

 
Figure 6. Results of using Northgate and Mt. Healthy >29 ft traffic counts to predict Near Road >29 
ft traffic counts via linear regression. The regression equation, p-value for fit of predictor, and R2 are 
shown in the top left of the figure. The two clusters of data seen are representative of weekend vs. 
weekday traffic volumes (see Figures S2–S4). 

3.3. 2020 Traffic Trends 
During 2020, it was predicted that 7–29 ft traffic made up approximately 85.24% of 

total traffic, while >29 ft traffic accounted for 14.67% of total traffic (with the remainder 
being 0–7 ft traffic). Traffic counts of all sizes of vehicles before the onset of the COVID-
19 pandemic was predicted to average 139,481 vehicles per day from 1 January through 
22 March. As social distancing policies were mandated in Ohio, followed by the closure 
of schools, restaurants, salons, etc., there was a significant decrease in traffic on Cincinnati 
roads. Total traffic counts decreased up to 25.55% and did return to near pre-pandemic 
total traffic levels until around 1 July. Traffic counts for vehicles 7–29 ft in length decreased 
similarly. 

Traffic counts of vehicles >29 ft in length slightly decreased during Ohio’s stay-at-
home order by 7.20% compared to pre-pandemic 2020 traffic levels. However, from 1 July 
through the end of the year, traffic volumes for this vehicle classification increased by 
25.95% compared to pre-pandemic 2020. For all time periods, traffic volumes of vehicles 
>29 ft were higher on weekdays compared to weekends (Figure 7). This is consistent with 
traffic volume data measured in 2018 at the Near Road site (Figure S4), suggesting that 
the COVID-19 pandemic policies did not impact relative differences in weekday vs. week-
end traffic volumes. 

Figure 6. Results of using Northgate and Mt. Healthy >29 ft traffic counts to predict Near Road >29 ft
traffic counts via linear regression. The regression equation, p-value for fit of predictor, and R2 are
shown in the top left of the figure. The two clusters of data seen are representative of weekend vs.
weekday traffic volumes (see Figures S2–S4).

3.3. 2020 Traffic Trends

During 2020, it was predicted that 7–29 ft traffic made up approximately 85.24% of to-
tal traffic, while >29 ft traffic accounted for 14.67% of total traffic (with the remainder being
0–7 ft traffic). Traffic counts of all sizes of vehicles before the onset of the COVID-19 pan-
demic was predicted to average 139,481 vehicles per day from 1 January through 22 March.
As social distancing policies were mandated in Ohio, followed by the closure of schools,
restaurants, salons, etc., there was a significant decrease in traffic on Cincinnati roads. Total
traffic counts decreased up to 25.55% and did return to near pre-pandemic total traffic
levels until around 1 July. Traffic counts for vehicles 7–29 ft in length decreased similarly.

Traffic counts of vehicles >29 ft in length slightly decreased during Ohio’s stay-at-
home order by 7.20% compared to pre-pandemic 2020 traffic levels. However, from 1 July
through the end of the year, traffic volumes for this vehicle classification increased by
25.95% compared to pre-pandemic 2020. For all time periods, traffic volumes of vehicles
>29 ft were higher on weekdays compared to weekends (Figure 7). This is consistent with
traffic volume data measured in 2018 at the Near Road site (Figure S4), suggesting that the
COVID-19 pandemic policies did not impact relative differences in weekday vs. weekend
traffic volumes.

3.4. Intraannual and Interannual Variability of Air Pollutants (PM2.5, BC, CO, NOX, NO2, O3)

Qualitative evaluation of boxplots show that differences in pollutant concentrations in
2020 at both sites were more pronounced for BC and CO than for PM2.5 and NO2/NOX
(Figures 8–12). NOX concentrations were much higher at the Near Road site compared to
NO2 at the Taft site (Figures 11 and 12). Ozone, measured only at the Taft site, exhibited
expected seasonal patterns with highest concentrations in the summer (Figure 13).



Atmosphere 2022, 13, 1459 9 of 23
Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 23 
 

 

 

Figure 7. Predicted daily traffic counts at the Near Road site for each classification type (total traffic 
count, 7–29 ft, and >29 ft). The two trends are indicative of traffic volume variation between week-
days and weekends. Note: The increase in vehicles >29 ft in length in mid-November is possibly due 
to a vehicle accident that occurred on the Brent Spence bridge (I-75 south of the Near Road site) on 
11 November 2020. This accident caused the bridge to be closed from 11 November through 22 De-
cember forcing traffic to circumvent this widely used means of crossing the Ohio River. I-275 is a 
means of such navigation; thus, it is hypothesized that the increase in traffic counts seen at the 
Northgate and Mt. Healthy sites were not accurate predictors of traffic at the Near Road site during 
this time. 

3.4. Intraannual and Interannual Variability of Air Pollutants (PM2.5, BC, CO, NOX, NO2, O3) 

Qualitative evaluation of boxplots show that differences in pollutant concentrations in 2020 at 
both sites were more pronounced for BC and CO than for PM2.5 and NO2/NOX (Figures 8–12). NOX 
concentrations were much higher at the Near Road site compared to NO2 at the Taft site (Figures 
11 and 12). Ozone, measured only at the Taft site, exhibited expected seasonal patterns with high-
est concentrations in the summer (Figure 13).  

 
Figure 8. Boxplots of hourly PM2.5 during each time period of interest during 2020 at the Near Road 
and Taft sites. 

3.4.1. PM2.5 

PM2.5 levels during the first half of Ohio’s stay-at-home order (23 March–10 April) 
were significantly higher than those pre-pandemic 2020 at both Taft (23.51%, p-value << 
0.001, Table S12) and Near Road (15.69%, p-value << 0.001, Table S10) (Figure 14). PM2.5 
levels during this time were also higher than those during every time period of interest of 

Figure 7. Predicted daily traffic counts at the Near Road site for each classification type (total traffic
count, 7–29 ft, and >29 ft). The two trends are indicative of traffic volume variation between weekdays
and weekends. Note: The increase in vehicles >29 ft in length in mid-November is possibly due
to a vehicle accident that occurred on the Brent Spence bridge (I-75 south of the Near Road site)
on 11 November 2020. This accident caused the bridge to be closed from 11 November through
22 December forcing traffic to circumvent this widely used means of crossing the Ohio River. I-275
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this time.
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3.4.1. PM2.5

PM2.5 levels during the first half of Ohio’s stay-at-home order (23 March–10 April) were
significantly higher than those pre-pandemic 2020 at both Taft (23.51%, p-value << 0.001,
Table S12) and Near Road (15.69%, p-value << 0.001, Table S10) (Figure 14). PM2.5 levels
during this time were also higher than those during every time period of interest of 2020
(aside from 1 July–11 December) and significantly higher than historical levels (2016–2018)
at Taft. These elevated ambient PM2.5 concentrations were unexpected since total traffic
counts during this time period were 24.41% lower than pre-pandemic 2020 total traffic
counts (Table S5). On the other hand, traffic volumes of >29 ft vehicles were only 2.49%
lower during the first half of the stay-at-home order than pre-pandemic traffic volumes
(Table S5). This suggests that the relatively large decrease in volumes of vehicles 7–29 ft
did not contribute significantly to a decrease in PM2.5. However, the statistically significant
increase in PM2.5 for several time periods investigated at both the Taft and the Near Road
sites suggest that other factors, such as meteorology or non-traffic emitters, may have
contributed to PM2.5 in the region during this time.
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Figure 14. Post hoc test results for intra-annual and interannual PM2.5 comparisons at the Near Road
and Taft sites: (a) intra-annual at Near Road; (b) intra-annual at Taft; (c) interannual at Near Road;
(d) interannual at Taft. The circles represent the difference in mean hourly PM2.5 concentrations
between the two time periods on each axis along with the 95% confidence interval (e.g., top left of top
figure: (mean PM2.5 23 March–10 April) − (mean PM2.5 1 January–22 March) = 1.512 ug/m3).

At the Near Road site, PM2.5 concentrations in 2020 were about the same as pre-COVID
over each time period analyzed. At the Taft site, PM2.5 increased over these time periods,
with a 9.44% increase (p-value = 6.23 × 10−4, Table S12) over 23 March–1 May and a
9.45% increase (p-value = 9.55 × 10−6, Table S12) over 23 March–30 June. Compared to
each analyzed historical year, PM2.5 was significantly lower in 2020 over each time period
of interest.

The increase in >29 ft vehicle traffic in the latter half of the year compared to pre-
pandemic 2020 was accompanied by an increase in PM2.5 when also compared to pre-
pandemic concentrations at both Taft (14.25%, p-value << 0.001, Table S12) and Near Road
(13.67%, p-value << 0.001, Table S10). Despite this observed increase, PM2.5 at the Near
road site from 1 July to 11 December was significantly lower than PM2.5 during the same
time period 2017 through 2019 (p-value << 0.001 for each case, Table S11). The Taft site also
reported significant decreases in PM2.5 when comparing this time period in 2020 to 2018
and 2019 (p-value < 0.001 in both cases, Table S13).

3.4.2. Black Carbon

Unlike PM2.5, BC levels during the first half of Ohio’s stay-at-home order (23 March–
10 April) were not statistically significantly different as compared to pre-pandemic 2020 at
both Taft and Near Road (Figure 15). At Near Road, this trend continued all time periods
except from 1 July to 11 December, when BC increased significantly. At Taft, there was
a significant decrease in BC over the entirety of Ohio’s stay-at-home order (23 March–
1 May) and a statistically significant increase from 20 May to 30 June and from 1 July to
11 December. Similar to PM2.5, BC was higher than pre-pandemic levels from 1 July to
11 December at both Taft (54.76%, p-value << 0.001, Table S16) and Near Road (56.25%,
p-value << 0.001, Table S14) and compared to every other time period of interest in 2020.
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Figure 15. Post hoc test results for intra-annual and interannual BC concentration comparisons at the
Near Road and Taft sites: (a) intra-annual at Near Road; (b) intra-annual at Taft; (c) interannual at Near
Road; (d) interannual at Taft. The circles represent the difference in mean hourly BC concentration
between the two time periods on each axis along with the 95% confidence interval (e.g., top left of top
figure: (mean BC 23 March–10 April) − (mean BC 1 January–22 March) = 0.131 ug/m3).

BC over the latter half of 2020 was significantly higher than BC over this time period
in 2018 (Near Road: 11.34%, p-value << 0.001, Table S15) and 2019 (Near Road: 11.24%,
p-value << 0.001; Taft: 14.68%, p-value << 0.001, Table S17), but was statistically lower than
2017 (Near Road: 11.60%, p-value << 0.001, Table S17) and 2016 (44.26%, p-value << 0.001,
Table S17). The increase in heavy-duty vehicle traffic from 1 July to 11 December (Table S5)
is a likely explanation for the increase in BC given that these vehicles tend to use diesel fuel,
which is a major source of BC emission [29,30].
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3.4.3. CO

At both the Near Road and the Taft sites, CO concentrations were not statistically
significantly different compared to pre-pandemic 2020 for all time periods evaluated except
for 1 July–11 December, when CO significantly increased (Figure 16). CO from 1 July to
11 December 2020 was significantly higher than pre-pandemic levels 2020 at Near Road
(37%, p-value << 0.001, Table S18) and Taft (18.15%, p-value << 0.001, Table S20). In addition,
from 20 May to 30 June at the Taft site, there was a statistically significant decrease in CO
when compared to pre-pandemic 2020 (7.66%, p-value << 0.001, Table S20). At this time,
total traffic volumes were 4.77% less than less than pre-pandemic 2020 volumes (Table S5).
Traffic volume changes do not seem to have influenced this decrease in CO since larger
traffic volume decreases occurred during several other time periods of interest where no
change in CO occurred. CO during the first half of 2020 at Near Road tended to be lower
than or the same as historical levels (aside from 1 July–11 December), while Taft CO was
either higher than or the same as 2017–2019 levels.
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Figure 16. Post hoc test results for intra-annual and interannual CO concentration comparisons at the
Near Road and Taft sites: (a) intra-annual at Near Road; (b) intra-annual at Taft; (c) interannual at Near
Road; (d) interannual at Taft. The circles represent the difference in mean hourly CO concentration
between the two time periods on each axis along with the 95% confidence interval (e.g., top left of top
figure: (mean CO 23 March–10 April) − (mean CO 1 January–22 March) = 0.000255 ppm).
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3.4.4. NOX/NO2

NOX trends followed more expected results compared to BC and PM2.5, as concentra-
tions seemed to more similarly mimic total traffic trends throughout 2020. NOX at the Near
Road site decreased significantly into the first half of the year compared to pre-pandemic
2020, with the largest decrease of 60.15% occurring over 20 May–30 June (p-value << 0.001,
Table S22) (Figure 17). Over the second half of 2020, NOX concentrations were 4.91% higher
(p-value 3.76 × 10−2) than pre-COVID levels and were higher than previous years as well
(2018 and 2019). NO2 at the Taft site exhibited similar trends to NOX at the Near Road site.
Compared to pre-pandemic 2020, NO2 during 2020 was significantly lower over each time
period analyzed, with significant decreases ranging from −7.20% to −34.49% (Table S24).
NOX during mid-year was significantly lower than previous years (2018 and 2019).
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Figure 17. Post hoc test for intra-annual and interannual NOX (Near Road) and NO2 (Taft) concen-
tration comparisons: (a) intra-annual at Near Road; (b) intra-annual at Taft; (c) interannual at Near
Road; (d) interannual at Taft. The circles represent the difference in mean NOX concentration between
the two time periods on each axis along with the 95% confidence interval (e.g., top left of top figure:
(mean NOX 23 March–10 April) − (mean NOX 1 January–22 March) = −7.64 ppb).
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3.4.5. O3

Because O3 is formed through photochemical reactions between NOX and VOCs,
O3 concentrations normally peak in the warm summer months when there is increased
photochemistry. Due to this inherent seasonality, the intra-annual Tukey tests comparing O3
throughout a single year may not give much insight into changes the COVID-19 pandemic
had on Cincinnati’s O3 concentrations. Therefore, Tukey tests were only conducted on
interannual data.

Similar to NOX and NO2, reductions in O3 were quite uniform across 2020. Pre-
pandemic 2020 O3 was significantly lower than each of the previous four years, with
reductions ranging from −14.45% (2016, Table S27) to −22.71% (2018, Table S27) (Figure 18).
O3 over every other time period analyzed was also lower in 2020 when compared to
historical levels, aside from 20 May–30 June and 23 March–30 June. It has been suggested
that Cincinnati is a VOC-sensitive region regarding O3 production [13]. Our results support
this when 2020 is compared with 2016, 2017m and 2018 for the time periods 23 March–
20 May and 20 May–30 June (Figure 18b). However, when comparing 2020 versus 2019,
reductions in NOX did not lead to a statistically significant change in O3 for the time periods
23 March–20 May and 20 May–30 June.
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Figure 18. Post hoc test results for intra-annual and interannual hourly O3 concentration comparisons
at the Taft site: (a) intra-annual at Taft; (b) interannual at Taft. The circles represent the difference
in mean hourly O3 concentration between the two time periods on each axis along with the 95%
confidence interval (e.g., top left of top figure: (mean O3 23 March–10 April) − (mean O3 1 January–
22 March) = 10.56 ppb).

3.5. Meteorological Analysis

During the first half of Ohio’s stay-at-home order (23 March–10 April 2020), PM2.5 at
both the Near Road and the Taft sites was significantly higher than pre-COVID 2020 levels.
At both sites, BC increased slightly, but this was not statistically significant. There were
unexpected significant increases in PM2.5 during the first 2 weeks of Ohio’s stay-at-home
order, while there was a concomitant decrease in traffic volumes. As a result, potential
meteorological effects, which can impact air quality, were also investigated [31,32].

Descriptive statistics of ambient temperature, relative humidity, pressure, and scalar
wind speed (Figures S5–S8, Tables S26–S28) suggest that small changes in these meteo-
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rological terms took place when comparing 1 January–22 March to 23 March–10 April
(aside from temperature). During this time, average ambient pressure decreased by 0.535%,
average wind speed decreased by 5.373%, and average relative humidity decreased by
5.54% (Table S26).

The ABL height was calculated for each day of 2020 at 8 a.m. and 8 p.m. For 1 April–
5 April, when pollutant concentrations were especially heigh, the ABL was an average of
520.10 m during the 8 p.m. reading and 551.60 m during the 8 a.m. reading, which were
68.78% and 48.65% lower than the annual average for 2020 (Table 2). During this 5 day time
period, PM2.5 at the Near Road and Taft sites was 28.37% and 29.091% higher, respectively,
than the annual average for 2020.

Table 2. Average ABL(m) over each indicated time period at 8 p.m. and at 8 a.m. in 2020, as well as
average and standard deviation of PM2.5 at the Near Road and Taft sites.

Time 1 January–
22 March

23 March–
10 April

1 April–
5 April

23 March–
1 May

23 March–
20 May

23 March–
30 June

1 July–
11 December

Year
Average

8 p.m. 1585.61 2478.87 520.096 2313.22 2168.094 1807.27 787.96 1665.87
8 a.m. 1447.716 1432.33 551.59 1260.75 1261.62 892.177 673.33 1074.21
Taft

PM2.5
(µg·m−3)

8.16 (4.585) 10.079 (6.05) 12.76 (8.011) 8.931 (5.548) 8.489 (5.312) 9.426 (5.575) 8.931 (5.44) 9.322 (6.531)

Near Road
PM2.5

(µg·m−3)
10.29 (7.597) 11.82 (9.82) 14.82 (12.47) 10.19 (8.699) 9.90 (8.471) 10.40 (8.023) 10.17 (8.306) 11.62 (8.662)

The average ABL from 1 July to 11 December was also estimated to be significantly
lower than the rest of the year. However, PM2.5 in the 1 July–11 December time period, was
lower by 12.64% and 3.02% at the Near Road and Taft site, respectively. In addition, there
were elevated concentrations of PM2.5, BC, and CO observed across the monitoring network
during this time, suggesting that other meteorological factors and/or increased regional
emissions may have impacted air pollutant concentrations during 23 March–10 April [33].

4. Discussion

The results of this work are consistent with several other studies focused on air quality
changes in the midwestern United States during the COVID-19 pandemic. For example,
PM2.5 increased by 19% at the Taft site during 15 March–25 April 2020 when compared to
25 January–7 March 2020, but this was not statistically significant [25]. However, there was
a statistically significant 18% increase in PM10. Furthermore, this study also reported statis-
tically significant increases in PM2.5 concentrations in Indianapolis, Seattle, and Cheyenne.
There were increases of PM2.5 in St. Louis, Tulsa, Atlanta, Portland, Cleveland, Kansas City,
Grantsville, and Bismarck, but these were not statistically significant. At urban monitoring
sites in Chicago, there were no statistically significant reductions in PM2.5, suggesting
that heavy-duty long-haul transportation are major contributors to air pollution in this
region [23].

No US-based studies were found focusing on BC during the COVID-19 pandemic.
However, several studies have been conducted in Europe and Asia. BC emissions were
reduced by 23 kt in Europe (20% in Italy, 40% in Germany, 34% in Spain, and 22% in France)
during lockdowns compared to the same period in the five previous years [34]. During
the second half of January 2020, BC emissions declined 70% in eastern China and 48% in
northern China compared to the first half of January 2020. Similar to this study, during
the first week of the lockdown in northern China, observed BC rose unexpectedly (29%)
even though the BC emissions fell, and it was suggested by the authors that stagnant
meteorological conditions were responsible for increased BC during this time [35].

For intra-annual analysis in 2020, CO concentrations remained relatively constant,
ostensibly because CO concentrations were low and Cincinnati has met the NAAQS CO
standard for many years. However, other work showed statistically significant decreases in
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CO in 14 out of 21 cities as a result of COVID policies [25]. When compared interannually,
CO emissions measurements taken from 70 flights from 2015 to 2020 in Washington, DC,
and Baltimore, MD were found to have declined to a greater extent in 2020 (−16%) than
compared to the trend observed since 2015 (−4.5%), which was attributable to decreases
in traffic during the lockdown [36]. This interannual CO trend at the Near Road site was
consistent with Lopez-Coto et al. (2022), but not at the Taft site. This suggests that the
decreases in CO compared to historical concentrations were more pronounced in areas
with elevated traffic such as interstates.

The significant decreases in NOX and NO2 seen in this work are consistent with other
work. Across the United States, NO2 declined by 25.5% with an absolute decrease of
4.8 ppb from 13 March to 8 April compared to 2017 through 2019 [22]. Additionally, all
28 sites analyzed reported decreases in NO2, with reductions ranging from −5% (Cheyenne,
WY, USA) to −49% (Las Vegas, NV, USA) when comparing 25 January through 7 March
2020 versus 15 March through 25 April 2020 [25]. NOX was also observed to significantly
decrease at multiple monitoring sites in Pittsburgh [24]. While PM2.5 is emitted from a
myriad of sources, NOX and NO2 are primarily emitted from the burning of fuel [37],
suggesting that changes in traffic may have more of an influence on ambient NOX and
NO2 concentrations.

Changes in O3 across the US during COVID-19 stay-at-home orders were not uniform.
From March to June, O3 concentrations decreased in rural NOX-limited regions (eastern
US), while localized increases in O3 were observed in urban areas that are VOC-limited
(western US) [38]. This variation was also noticed when O3 concentrations were compared
at 27 N-Core sites in the US (25 January–7 March 2020 versus 15 March–25 April 2020). O3
increased by up to 25% (Salt Lake City, UT, USA) and decreased by up to 15% (Indianapolis,
IN, USA) [25]. The reduction in O3 compared to historical years seen in this study is
consistent with O3 reductions observed in some eastern US cities studied in other work.

The lack of a reduction in PM2.5, BC, and CO during times of such significant reduc-
tions in total traffic could indicate the major influence that particular vehicles have on air
quality, such as heavy-duty vehicles and outdated passenger cars/trucks. Therefore, the
relatively minimal decrease in >29 ft traffic volumes compared to total traffic volumes
could have offset any potential improvements to air quality that may have been observed
due to reductions in the mobility of Cincinnatians with passenger vehicles.

Continued operation of outdated passenger cars and pickup trucks could have also
played a role in offsetting any potential air quality improvements seen from reduced traffic.
While many workers across Cincinnati were able to work from home to avoid unnecessary
contact with coworkers, plenty of those deemed “essential” workers had to continue their
daily commutes to work. An analysis of 2019 data from the Bureau of Labor Statistics
found that essential workers in Ohio earned approximately 21.5% less (30,264 USD) than
the average income of the entire state [39]. This suggests that the essential workers that
remained on Cincinnati roads during Ohio’s stay-at-home order likely tended to have
more outdated and low-cost vehicles. Moreover, it was estimated in a Canadian study
that <25% of vehicles contribute to >90% of BC and CO emissions and >70% of particle
number emissions of an entire fleet [40], suggesting that the observed reduction in traffic
may have comprised vehicles belonging to higher-earning citizens whose vehicles are new
and efficient enough to minimally contribute to ambient pollutant concentrations.

It should be noted that there were data gaps for each analyzed pollutant at both sites.
Traffic volume data were not available during 2020 at the Near Road site, necessitating
a linear regression model to estimate traffic volumes. Additionally, traffic volumes at
the Taft site could not be accounted for, as no traffic monitoring sites have ever been
operated in this location. In addition, data such as make, model, age and fuel types used
by the region’s vehicle fleet are not available and are, therefore, a source of uncertainty.
Likewise, precipitation data could not be accessed over the entire time period of interest
in this study. Additional meteorological data, as well as information of other regional
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emitters, could provide further insight into unexpected air quality changes during Ohio’s
stay-at-home order.

5. Conclusions

Air pollutant and traffic volume data were analyzed in the city of Cincinnati, OH
during 2020 to investigate any possible changes that came about in response to the COVID-
19 pandemic. Air pollution data from 2016 to 2020 were used from two monitoring sites,
a central site (Taft) and a Near Road site. Traffic volumes at the Near Road site for 2020
were predicted a using linear regression analysis based on traffic data at two nearby sites.
Predicted traffic volumes in 2020 at the Near Road site were subsequently used to separate
time periods of interest for air quality data analysis. The stay-at-home orders mandated
in response to the COVID-19 pandemic reduced total traffic volumes in the Cincinnati
region from mid-March to July 2020. The largest reductions in traffic volume (−25%)
occurred during the first half of the stay-at-home order. From July through the end of 2020,
total traffic volumes returned to near pre-pandemic records, while volumes of vehicles
>29 ft increased up to 25%. During 2020, changes in air quality in the Cincinnati region
were not uniform compared to pre-pandemic 2020, as well as compared to historical data.
Statistically significant increases in PM2.5 occurred at both sites (Near Road: 15.68%; Taft:
23.51%) during the first half of Ohio’s stay-at-home order (23 March–10 April) compared to
pre-pandemic 2020. These results were unexpected considering this was a period of time
when traffic volumes were at their lowest, as well as when reductions in NOX (−15.88%)
and NO2 (−31.39%) were observed. During this time, no changes in CO were observed
compared to pre-pandemic 2020 at both sites, but Near Road CO tended to be lower than or
the same as historical levels, while Taft CO was either higher than or the same as 2017–2019
levels. O3 decreased or stayed the same compared to historical years over each time period
analyzed, with reductions ranging from −14.45% to −22.71%. During the latter half of the
year, compared to pre-pandemic 2020, increases in PM2.5 (Near Road: 13.67%; Taft: 14.23%),
BC (Near Road: 56.25%; Taft: 54.76%), and CO (Near Road: 37.02%; Taft: 18.15%) were
observed. This likely can be explained by the heavy-duty vehicle volume observed during
this time. Meteorological analyses of ambient temperature, relative humidity, pressure, and
scalar wind speed, as well as atmospheric boundary layer, in this work were inconclusive
regarding this unexpected increase in ambient PM2.5. Despite the spike in PM2.5 observed
during the first half of the stay-at-home order, the air quality index (AQI) was never greater
than 100 during this time. In fact, there were only 7 days in all of 2020 when the AQI was
above 100, all of which were attributed to O3 (aside from 4 July, where PM2.5 was the driving
pollutant). Results of this work suggest that improvements in air quality improvement
from reductions in traffic volumes were limited due to the impacts of heavy-duty vehicles,
non-traffic emission sources, and/or meteorology.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atmos13091459/s1: Figure S1: Traffic counts of vehicles 0–7 ft in
length at the Mt. Healthy and Northgate sites; Figure S2. Traffic volume counts for vehicles >29 ft
by day of the week during 2020; Figure S3. Predicted traffic counts for each classification at the
Near Road site by day of the week over 2020; Figure S4. Traffic volume counts for vehicles >29 ft
by day of the week during 2018; Figure S5. Boxplots of ambient temperature at the Near Road site
during each time period of interest 2016 through 2020; Figure S6. Boxplots of ambient pressure at
the Near Road site during each time period of interest 2016 through 2020; Figure S7. Boxplots of
ambient relative humidity at the Near Road site during each time period of interest 2016 through
2020; Figure S8. Boxplots of scalar wind speed at the Near Road site during each time period of
interest 2016 through 2020; Table S1. Results of round 2 linear regression for prediction of total traffic
counts at Near Road site in 2020. Northgate was used as the sole predictor because, when both
Northgate and Mt. Healthy were used as predictors, the Northgate site coefficient was not statistically
significant (p-value = 0.3365) while the Mt. Heathy site was somewhat significant (p-value = 0.0553);
Table S2. Results of round 2 linear regression for prediction of 0–7 ft traffic counts at Near Road site
in 2020. The model was built using both Mt. Healthy and Northgate sites as predictors only showed

https://www.mdpi.com/article/10.3390/atmos13091459/s1
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Mt. Healthy site coefficient to be somewhat significant (p-value = 0.0656), while the Northgate site
coefficient was not statistically significant (p-value = 0.7022); Table S3. Results of round 2 linear
regression for prediction of 7–29 ft traffic counts at Near Road site in 2020. The model was built
using both Mt. Healthy and Northgate sites as predictors only showed the Northgate site coefficient
to be somewhat significant (p-value =1.2 × 10−7), while the Mt. Healthy site coefficient was not
statistically significant (p-value = 0.0866); Table S4. Results of round 1 linear regression for prediction
of total counts >29 ft at Near Road site in 2020; Table S5. Predicted daily traffic counts at the Near
Road site for each classification type (total traffic count, 0–7 ft, 7–29 ft, and >29 ft). Percentages shown
indicate percent changes in traffic counts for each classification compared to respective classification
type from pr × 10−pandemic 2020 (January 1–March 22); Table S6. Mean and standard deviation of
pollutant concentration measured at the Near Road and Taft sites during each time period of interest
from 2016 through 2020. The first number in each cell represents the mean, while the number in
parentheses represents the standard deviation; Table S7. Median pollutant concentration measured
at the Near Road and Taft site during each time period of interest from 2016 through 2020; Table
S8. Range of pollutant concentration measured at the Near Road and Taft site during each time
period of interest from 2016 through 2020; Table S9. Mean BC to PM2.5 ratio measured at the Near
Road and Taft site during each time period of interest from 2016 through 2020; Table S10. Results of
interannual t-tests for PM2.5 concentrations over time periods of interest at the Near Road site for
each year 2017 through 2020; Table S11. Results of interannual t-tests for PM2.5 concentrations over
time periods of interest at the Near Road site for each year 2017 through 2020; Table S12. Results
of interannual t-tests for PM2.5 concentrations over time periods of interest at the Taft site for each
year 2016 through 2020; Table S13. Results of interannual t-tests for PM2.5 concentrations over time
periods of interest at the Taft site for each year 2016 through 2020; Table S14. Results of interannual
t-tests for BC concentrations over time periods of interest at the Near Road site for each year 2016
through 2020; Table S15. Results of interannual t-tests for BC concentrations over time periods of
interest at the Near Road site for each year 2016 through 2020; Table S16. Results of interannual
t-tests for BC concentrations over time periods of interest at the Taft site from 2019 through 2020;
Table S17. Results of interannual t-tests for BC concentrations over time periods of interest at the
Taft site from 2019 through 2020; Table S18. Results of interannual t-tests for CO concentrations over
time periods of interest at the Near Road site for each year 2016 through 2020; Table S19. Results of
interannual t-tests for CO concentrations over time periods of interest at the Near Road site for each
year 2016 through 2020; Table S20. Results of interannual t-tests for CO concentrations over time
periods of interest at the Taft site for each year 2016 through 2020; Table S21. Results of interannual
t-tests for CO concentrations over time periods of interest at the Taft site for each year 2016 through
2020; Table S22. Results of interannual t-tests for NOX concentrations over time periods of interest
at the Near Road site for each year 2016 through 2020; Table S23. Results of interannual t-tests for
NOX concentrations over time periods of interest at the Near Road site for each year 2016 through
2020; Table S24. Results of interannual t-tests for NO2 concentrations over time periods of interest at
the Near Road site for each year 2016 through 2020; Table S25. Results of interannual t-tests for NO2
concentrations over time periods of interest at the Near Road site for each year 2016 through 2020;
Table S26. Results of interannual t-tests for O3 concentrations over time periods of interest at the Taft
site for each year 2016 through 2020; Table S27. Results of interannual t-tests for O3 concentrations
over time periods of interest at the Taft site for each year 2016 through 2020; Table S28. Mean and
standard deviation of meteorological terms analyzed at the Near Road site during each time period
of interest 2016 through 2020; Table S29. Median of meteorological terms analyzed at the Near Road
site during each time period of interest 2016 through 2020; Table S30. Median of meteorological terms
analyzed at the Near Road site during each time period of interest 2016 through 2020; Table S31.
Difference in intra-annual 2020 PM2.5 concentrations (µg/m3), as well as 95% confidence interval of
each indicated time period at Near Road; Table S32. Difference in interannual PM2.5 concentrations
(µg/m3) 2017–2019 compared to 2020, as well as 95% confidence interval of each indicated time
period at Near Road; Table S33. Difference in intra-annual 2020 PM2.5 concentrations (µg/m3), as well
as 95% confidence interval of each indicated time period at Taft; Table S34. Difference in interannual
PM2.5 concentrations (µg/m3) 2016–2019 compared to 2020, as well as 95% confidence interval of
each indicated time period at Taft; Table S35. Difference in intra-annual 2020 BC concentrations
(µg/m3), as well as 95% confidence interval of each indicated time period at Near Road; Table S36.
Difference in interannual BC concentrations (µg/m3) 2016–2019 compared to 2020, as well as 95%
confidence interval of each indicated time period at Near Road; Table S37. Difference in intra-annual
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2020 BC concentrations (µg/m3), as well as 95% confidence interval of each indicated time period at
Taft; Table S38. Difference in interannual BC concentrations (µg/m3) 2019 compared to 2020, as well
as 95% confidence interval of each indicated time period at Taft; Table S39. Difference in intra-annual
2020 CO concentrations (ppm), as well as 95% confidence interval of each indicated time period
at Near Road; Table S40. Difference in interannual CO concentrations (ppm) 2016–2019 compared
to 2020, as well as 95% confidence interval of each indicated time period at Near Road; Table S41.
Difference in intra-annual 2020 CO concentrations (ppm), as well as 95% confidence interval of each
indicated time period at Taft; Table S42. Difference in interannual CO concentrations (ppb) 2016–2019
compared to 2020, as well as 95% confidence interval of each indicated time period at Taft; Table S43.
Difference in intra-annual 2020 NOX concentrations (ppm), as well as 95% confidence interval of each
indicated time period at Near Road; Table S44. Difference in interannual NOX concentrations (ppm)
2016–2019 compared to 2020, as well as 95% confidence interval of each indicated time period at Near
Road; Table S45. Difference in intra-annual 2020 NO2 concentrations (ppm), as well as 95% confidence
interval of each indicated time period at Taft; Table S46. Difference in interannual NO2 concentrations
(ppm) 2016–2019 compared to 2020, as well as 95% confidence interval of each indicated time period
at Taft; Table S47. Difference in intra-annual 2020 O3 concentrations (ppm), as well as 95% confidence
interval of each indicated time period at Taft; Table S48. Difference in interannual O3 concentrations
(ppm) 2016–2019 compared to 2020, as well as 95% confidence interval of each indicated time period
at Taft.
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